-
-
Notifications
You must be signed in to change notification settings - Fork 210
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
6 changed files
with
168 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,93 @@ | ||
# [Bifurcation Diagrams](@id bifurcation_diagrams) | ||
Bifurcation diagrams describes how, for a dynamic system, the quantity and quality of its steady states changes with a parameter's value. These can be computed through the [BifurcationKit.jl](https://github.com/bifurcationkit/BifurcationKit.jl) package. ModelingToolkit provides a simple interface for creating BifurcationKit compatible `BifurcationProblem`s from `NonlinearSystem`s and `ODESystem`s. All teh features provided by BifurcationKit can then be applied to these systems. This tutorial provides a brief introduction for these features, with BifurcationKit.jl providing [a more extensive documentation](https://bifurcationkit.github.io/BifurcationKitDocs.jl/stable/). | ||
|
||
### Creating a `BifurcationProblem` | ||
Let us first consider a simple `NonlinearSystem`: | ||
```@example Bif1 | ||
using ModelingToolkit | ||
@variables t x(t) y(t) | ||
@parameters μ α | ||
eqs = [0 ~ μ*x - x^3 + α*y, | ||
0 ~ -y] | ||
@named nsys = NonlinearSystem(eqs, [x, y], [μ, α]) | ||
``` | ||
we wish to compute a bifurcation diagram for this system as we vary the parameter `μ`. For this, we need to provide the following information: | ||
1. The system for which we wish to compute the bifurcation diagram (`nsys`). | ||
2. The parameter which we wish to vary (`μ`). | ||
3. The parameter set for which we want to compute the bifurcation diagram. | ||
4. An initial guess of the state of the system for which there is a steady state at our provided parameter value. | ||
5. The variable which value we wish to plot in the bifurcation diagram (this argument is optional, if not provided, BifurcationKit default plot functions are used). | ||
|
||
We declare this additional information: | ||
```@example Bif1 | ||
bif_par = μ | ||
p_start = [μ => -1.0, α => 1.0] | ||
u0_guess = [x => 1.0, y => 1.0] | ||
plot_var = x; | ||
``` | ||
For the initial state guess (`u0_guess`), typically any value can be provided, however, read BifurcatioKit's documentation for more details. | ||
|
||
We can now create our `BifurcationProblem`, which can be provided as input to BifurcationKit's various functions. | ||
```@example Bif1 | ||
using BifurcationKit | ||
bprob = BifurcationProblem(nsys, u0_guess, p_start, bif_par; plot_var=plot_var, jac=false) | ||
``` | ||
Here, the `jac` argument (by default set to `true`) sets whenever to provide BifurcationKit with a Jacobian or not. | ||
|
||
|
||
### Computing a bifurcation diagram | ||
|
||
Let us consider the `BifurcationProblem` from the last section. If we wish to compute the corresponding bifurcation diagram we must first declare various settings used by BifurcationKit to compute the diagram. These are stored in a `ContinuationPar` structure (which also contain a `NewtonPar` structure). | ||
```@example Bif1 | ||
p_span = (-4.0, 6.0) | ||
opt_newton = NewtonPar(tol = 1e-9, max_iterations = 20) | ||
opts_br = ContinuationPar(dsmin = 0.001, dsmax = 0.05, ds = 0.01, | ||
max_steps = 100, nev = 2, newton_options = opt_newton, | ||
p_min = p_span[1], p_max = p_span[2], | ||
detect_bifurcation = 3, n_inversion = 4, tol_bisection_eigenvalue = 1e-8, dsmin_bisection = 1e-9); | ||
``` | ||
Here, `p_span` sets the interval over which we wish to compute the diagram. | ||
|
||
Next, we can use this as input to our bifurcation diagram, and then plot it. | ||
```@example Bif1 | ||
bf = bifurcationdiagram(bprob, PALC(), 2, (args...) -> opts_br; bothside=true) | ||
``` | ||
Here, the value `2` sets how sub-branches of the diagram that BifurcationKit should compute. Generally, for bifurcation diagrams, it is recommended to use the `bothside=true` argument. | ||
```@example Bif1 | ||
using Plots | ||
plot(bf; putspecialptlegend=false, markersize=2, plotfold=false, xguide="μ", yguide = "x") | ||
``` | ||
Here, the system exhibits a pitchfork bifurcation at *μ=0.0*. | ||
|
||
### Using `ODESystem` inputs | ||
It is also possible to use `ODESystem`s (rather than `NonlinearSystem`s) as input to `BifurcationProblem`. Here follows a brief such example. | ||
|
||
```@example Bif2 | ||
using BifurcationKit, ModelingToolkit, Plots | ||
@variables t x(t) y(t) | ||
@parameters μ | ||
D = Differential(t) | ||
eqs = [D(x) ~ μ*x - y - x*(x^2+y^2), | ||
D(y) ~ x + μ*y - y*(x^2+y^2)] | ||
@named osys = ODESystem(eqs, t) | ||
bif_par = μ | ||
plot_var = x | ||
p_start = [μ => 1.0] | ||
u0_guess = [x => 0.0, y=> 0.0] | ||
bprob = BifurcationProblem(osys, u0_guess, p_start, bif_par; plot_var=plot_var, jac=false) | ||
p_span = (-3.0, 3.0) | ||
opt_newton = NewtonPar(tol = 1e-9, max_iterations = 20) | ||
opts_br = ContinuationPar(dsmin = 0.001, dsmax = 0.05, ds = 0.01, | ||
max_steps = 100, nev = 2, newton_options = opt_newton, | ||
p_max = p_span[2], p_min = p_span[1], | ||
detect_bifurcation = 3, n_inversion = 4, tol_bisection_eigenvalue = 1e-8, dsmin_bisection = 1e-9) | ||
bf = bifurcationdiagram(bprob, PALC(), 2, (args...) -> opts_br; bothside=true) | ||
using Plots | ||
plot(bf; putspecialptlegend=false, markersize=2, plotfold=false, xguide="μ", yguide = "x") | ||
``` | ||
Here, the value of `x` in the steady state does not change, however, at `μ=0` a Hopf bifurcation occur and the steady state turn unstable. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,40 @@ | ||
module MTKBifurcationKitExt | ||
|
||
println("BifurcationKit extension loaded") | ||
|
||
### Preparations ### | ||
|
||
# Imports | ||
using ModelingToolkit, Setfield | ||
import BifurcationKit | ||
|
||
### Creates BifurcationProblem Overloads ### | ||
|
||
# When input is a NonlinearSystem. | ||
function BifurcationKit.BifurcationProblem(nsys::NonlinearSystem, u0_bif, ps, bif_par, args...; plot_var=nothing, record_from_solution=BifurcationKit.record_sol_default, jac=true, kwargs...) | ||
# Creates F and J functions. | ||
ofun = NonlinearFunction(nsys; jac=jac) | ||
F = ofun.f | ||
J = jac ? ofun.jac : nothing | ||
|
||
# Computes bifurcation parameter and plot var indexes. | ||
bif_idx = findfirst(isequal(bif_par), parameters(nsys)) | ||
if !isnothing(plot_var) | ||
plot_idx = findfirst(isequal(plot_var), states(nsys)) | ||
record_from_solution = (x, p) -> x[plot_idx] | ||
end | ||
|
||
# Converts the input state guess. | ||
u0_bif = ModelingToolkit.varmap_to_vars(u0_bif, states(nsys)) | ||
ps = ModelingToolkit.varmap_to_vars(ps, parameters(nsys)) | ||
|
||
return BifurcationKit.BifurcationProblem(F, u0_bif, ps, (@lens _[bif_idx]), args...; record_from_solution = record_from_solution, J = J, kwargs...) | ||
end | ||
|
||
# When input is a ODESystem. | ||
function BifurcationKit.BifurcationProblem(osys::ODESystem, args...; kwargs...) | ||
nsys = NonlinearSystem([0 ~ eq.rhs for eq in equations(osys)], states(osys), parameters(osys); name=osys.name) | ||
return BifurcationKit.BifurcationProblem(nsys, args...; kwargs...) | ||
end | ||
|
||
end # module |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,29 @@ | ||
using BifurcationKit, ModelingToolkit, Test | ||
|
||
# Checks pitchfork diagram and that there are the correct number of branches (a main one and two children) | ||
let | ||
@variables t x(t) y(t) | ||
@parameters μ α | ||
eqs = [0 ~ μ*x - x^3 + α*y, | ||
0 ~ -y] | ||
@named nsys = NonlinearSystem(eqs, [x, y], [μ, α]) | ||
|
||
bif_par = μ | ||
p_start = [μ => -1.0, α => 1.0] | ||
u0_guess = [x => 1.0, y => 1.0] | ||
plot_var = x; | ||
|
||
using BifurcationKit | ||
bprob = BifurcationProblem(nsys, u0_guess, p_start, bif_par; plot_var=plot_var, jac=false) | ||
|
||
p_span = (-4.0, 6.0) | ||
opt_newton = NewtonPar(tol = 1e-9, max_iterations = 20) | ||
opts_br = ContinuationPar(dsmin = 0.001, dsmax = 0.05, ds = 0.01, | ||
max_steps = 100, nev = 2, newton_options = opt_newton, | ||
p_min = p_span[1], p_max = p_span[2], | ||
detect_bifurcation = 3, n_inversion = 4, tol_bisection_eigenvalue = 1e-8, dsmin_bisection = 1e-9); | ||
|
||
bf = bifurcationdiagram(bprob, PALC(), 2, (args...) -> opts_br; bothside=true) | ||
|
||
@test length(bf.child) == 2 | ||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters