Skip to content

Scaling Distributed Machine Learning with the Parameter Server

Notifications You must be signed in to change notification settings

Skian12/ParameterServer

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 

Repository files navigation

package request

  • python -m pip install --upgrade pip
  • python -m pip install grpcio
  • python -m pip install grpcio-tools

generate python class file by proto file

  • cd python
  • python -m grpc_tools.protoc -I../protos --python_out=. --grpc_python_out=. ../protos/parameters.proto

Start Server

  • cd python
  • python server.py

Start Worker

  • cd python
  • python worker.py

Basic Design Rules

Master

  • Separate dataset by number of workers
  • When all Worker finish the job, inform Server to save parameters to hard disk
  • Then all Nodes stop operation
  • When worker number changes, redecided data partition
  • initial waiting time for register

Server

  • Provide PUSH and PULL method
  • Wait? Lock?

Worker

  • Communicate With master to decide the data partition
  • Every step finished, use push and pull to update parameters
  • Report to Master when finish the job
  • Inform Master when join into the cluster

Work flow

  • Start master, Then Server, Then Worker
  • Every Server and Worker register to Master
  • Master decide data partition
  • Worker got partition information, get data back, then begin training
  • Every one batch finished, push and pull to update parameters
  • After finished training, inform master
  • Master finished the subsequent work(save parameters etc.)
  • Finish training, test result

About

Scaling Distributed Machine Learning with the Parameter Server

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%