Skip to content

Peer_Session_Week_3

JAEHEE RYU edited this page May 24, 2021 · 1 revision

Day12๐ŸŒง

2021.05.10 (์›”)

๋Œ€ํšŒ ํ† ํฌ

โค๏ธRetriever

  • ๋…ผ์˜ ์‚ฌํ•ญ ์—†์Œ

๐Ÿ’™Reader

  • ์ˆ˜์ง€ : KoElectra ๋Œ๋ฆฌ๋Š” Code ์™„์„ฑํ•จ! ์ž์ž˜ํ•˜๊ณ  ์‚ฌ์†Œํ•œ ๋ฌธ์ œ๊ฐ€ ์žˆ๋Š”๋ฐ, ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ์„ ๋“ฏ.
  • ์ˆ˜์ง€ : ์ •๋‹ต์œผ๋กœ Unknown Token์ด ์ถœ๋ ฅ๋˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ์žˆ์Œ.
    • ํƒœ์–‘ & ํ˜„๊ทœ : Vocab์— ์ถ”๊ฐ€ํ•ด์•ผ ํ•œ๋‹ค.
    • ์ข…ํ—Œ & ์žฌํฌ : Vocab์— ์ƒˆ๋กœ์šด Token์„ ์ถ”๊ฐ€ํ•˜๋Š” ๊ฒƒ์ด ์ข‹์„์ง€ ๋ชจ๋ฅด๊ฒ ๋‹ค

๐Ÿ’š Baseline

  • inference.sh์— --do_predict ์ถ”๊ฐ€ํ•ด์•ผ ํ•จ.
  • sh๋ฅผ ์‹คํ–‰ ์‹œํ‚ฌ ๋•Œ, ์ฃผ์„์ฒ˜๋ฆฌ ํ•˜์ง€ ์•Š๊ฑฐ๋‚˜, ํ• ๊ฑฐ๋ฉด ๋งจ ๋’ค๋กœ ๋นผ๊ธฐ.
  • sh ์‹คํ–‰ ์‹œ seed ์„ค์ •ํ•˜๊ธฐ.

Day13๐Ÿ˜ด

2021.05.11 (ํ™”)

๋Œ€ํšŒ ํ† ํฌ

โค๏ธRetriever

  • ๋…ผ์˜ ์‚ฌํ•ญ ์—†์Œ

๐Ÿ’™Reader

  • ์ตํšจ : k๋ฅผ ์—„์ฒญ ๋Š˜๋ ธ๋‹ค. 20๊ฐœ๋กœ ๋Š˜๋ ธ๋”๋‹ˆ ๋ฐ”๋กœ ์˜ฌ๋ž๋‹ค. k๊ฐ€ ๋งŽ์•„์งˆ์ˆ˜๋ก ์„ ํƒํ•˜๊ธฐ ํž˜๋“ค์–ด ์ง€๋Š” ๊ฒƒ์ด ๋งž์„ ํ…๋ฐ ์™œ ๋” ์„ฑ๋Šฅ์ด ์˜ค๋ฅด๋Š” ๊ฑธ๊นŒ?? test dataset์—์„œ train dataset์— ํฌํ•จ๋œ ๋ฐ์ดํ„ฐ๋“ค์ด ์ ์  ๋งŽ์ด ํฌํ•จ๋˜์–ด ์ง€๋Š” ๊ฒƒ์ด ์•„๋‹๊นŒ? ๊ทธ๋ž˜์„œ ์ด ๋ฐฉ๋ฒ•์ด ๋งž๋Š” ๋ฐฉ๋ฒ•์ธ์ง€ ๊ณ ๋ฏผ์ด๋‹ค. k๊ฐ€ 9๊ฐœ์ผ ๊ฒฝ์šฐ์™€ 20๊ฐœ์ผ ๊ฒฝ์šฐ๋ฅผ ๋น„๊ตํ•ด๋ณด์•˜๋Š”๋ฐ retrieval์—์„œ ์˜ค๋ฅธ ์•ฝ 2% ์ •๋„ ์˜ฌ๋ž๋Š”๋ฐ reader์—์„œ ์˜ค๋ฅธ ์„ฑ๋Šฅ๋„ ์•ฝ 2% ์ •๋„๋ผ์„œ trade off ์—†์ด ๋™์ผํ•œ ์„ฑ๋Šฅ ํ–ฅ์ƒ์„ ๊ฐ€์ง€๋Š” ๊ฒƒ์ด ์ข€ ์˜๋ฌธ์ด๋‹ค.
    • ํ•œ ์ค„ ์š”์•ฝ: 61.25 ์„ฑ๋Šฅ์ด ๋‚˜์™”๋˜ ๋ชจ๋ธ์—์„œ k๋ฅผ ๋Š˜๋ ธ์„ ๋ฟ
  • ์ตํšจ : wiki ์ž๋ฅด๋Š” ๊ฑฐ โ‡’ validation set ๊ธฐ์ค€ ์„ฑ๋Šฅ ํ–ฅ์ƒ (EM ๊ธฐ์ค€ 2%, F1 ์Šค์ฝ”์–ด ๊ธฐ์ค€ 3%) โ‡’ ๊ทผ๋ฐ ํ…Œ์ŠคํŠธ ๋ฐ์ดํ„ฐ์— ํ•œํ•ด์„  ๋–จ์–ด์ง (56 ์ •๋„...)
    • ์™œ์ธ์ง€ ๋ชจ๋ฅด๊ฒ ์Œ
    • KSS(korean sentence splitter) ์‚ฌ์šฉํ•ด์„œ ๋ฌธ์žฅ์„ ์ž๋ฆ„
    • context๋ฅผ ๋ฌธ์žฅ๋‹จ์œ„๋กœ ๋‚˜๋ˆ„๊ณ  ์ „์ฒด context์˜ ์ ˆ๋ฐ˜ ๊ธธ์ด์— ๊ฐ€๊น๋„๋ก ๋ฌธ์žฅ๋“ค์„ part 1, 2๋กœ ๋‚˜๋ˆ„๋Š” ๋ฐฉ๋ฒ•
    • ์—ฌ๊ธฐ์„œ GT answer์€ raw context์˜ answer index์™€ ๊ฐ€์žฅ ๊ฐ€๊นŒ์šด answer๋กœ
    • overlap์€ ํ™œ์šฉํ•˜์ง€ ์•Š์Œ
  • ์ตํšจ : Conv Layer Model ๊ตฌํ˜„(Concat Version)

Day14๐Ÿ˜€

2021.04.28 (์ˆ˜)

๋Œ€ํšŒ ํ† ํฌ

โค๏ธRetriever

  • ๋…ผ์˜ ์‚ฌํ•ญ ์—†์Œ

๐Ÿ’™Reader

  • ์ตํšจ : ์˜ํƒ€ ๋…ผ๋ฌธ ํ•ด๋ณด๋ ค๊ณ  ํ–ˆ๋Š”๋ฐ ํ—ˆ๊น…ํŽ˜์ด์Šค์— ์žˆ์–ด์„œ ๊ฐ€์ ธ์˜ค๋ ค๊ณ  ๋ถˆ๋ €๋Š”๋ฐ ์•ˆ๋ถˆ๋Ÿฌ์™€์ ธ์„œ ๋ฒ„์ „์„ ์—…๋ฐ์ดํŠธํ•ด์•ผ๋˜๋‚˜ ํ–ˆ๋Š”๋ฐ ์ด๋ฏธ ์ตœ์‹ ๋ฒ„์ „์ด๊ณ  ํ˜น์‹œ XLN์ด roberta ๋ชจ๋ธ์ธ๊ฐ€์š”?? https://arxiv.org/pdf/2010.01057v1.pdf
    • ํƒœ์–‘ : ์ €ํฌ๊ฐ€ ์‚ฌ์šฉํ•˜๋Š” tokenizer๋Š” word piece tokenizer์ธ๋ฐ XLN์€ sentence piece tokenizer๋ผ๊ณ ๋Š” ๋‚˜์™€์žˆ๋„ค์š”.
    • ํ˜„๊ทœ : ์‚ฌ์‹ค ์ง€๊ธˆ ์‚ฌ์šฉํ•˜๋Š” XLM Roberta๋„ ์–ด๋–ป๊ฒŒ ๋™์ž‘ํ•˜๋Š”์ง€ ์ž˜ ๋ชจ๋ฅด๊ฒ ๋”๋ผ๊ณ ์š”...
  • ์ˆ˜์ง€ : HanBERT ์‚ฌ์šฉ ์˜ˆ์ •
  • ์ตํšจ : convolution ์‚ฌ์šฉํ•œ ๋ชจ๋ธ์€ ์„ฑ๋Šฅ์ด ์กฐ๊ธˆ ๋–จ์–ด์กŒ์–ด์š”...
  • ํ˜„๊ทœ : max sequence length๋ฅผ 512๋กœ ๋Š˜๋ ค์„œ ์‹คํ—˜ํ•ด๋ด„. batch๋ฅผ 8๋กœ ์ค„์—ฌ์•ผ ํ–ˆ๊ณ , ์–ด๋–ค ์ด์œ ์ธ์ง€๋Š” ์•Œ ์ˆ˜ ์—†์œผ๋‚˜, ๊ฒฐ๋ก ์ ์œผ๋กœ ์„ฑ๋Šฅ์ด ๋–จ์–ด์ง.
  • ํƒœ์–‘ : validation set์— ์กฐ์‚ฌ๋ฒ„๋ฆฌ๊ธฐ๋ฅผ ์ ์šฉํ–ˆ๋”๋‹ˆ ๋‹ค๋ฅธ ๋ถ„๋“ค๋ณด๋‹ค ๋น„๊ต์  score๊ฐ€ ๋†’๊ฒŒ ๋‚˜์˜จ๋‹ค.
  • ํƒœ์–‘ : korquad ํ•™์Šตํ• ๋•Œ๋Š” learning rate๋ฅผ ํฌ๊ฒŒ ํ•ด์„œ ๋น ๋ฅด๊ฒŒ ํ•™์Šตํ•ด์ฃผ๊ณ , ๋Œ€ํšŒ dataset์„ ์‚ฌ์šฉํ•  ๋•Œ๋Š” ์ž‘์€ learning rate๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ํ•™์Šตํ•ด์ฃผ๋ฉด ์ข‹์„ ๊ฒƒ ๊ฐ™๋‹ค.

๋ฉ˜ํ† ๋ง(with ์กฐ์šฉ๋ž˜ ๋ฉ˜ํ† ๋‹˜)

1๏ธโƒฃ ์ตœ๊ณ  ์„ฑ๋Šฅ ๋ชจ๋ธ ๊ณต์œ  ๋ฐ ๊ฐœ์„ ์  ๋„์ถœ

ํ˜„์žฌ ํŒ€์ด์ฟ„ ์ตœ๊ณ  ์„ฑ๋Šฅ ๋ชจ๋ธ(1๋“ฑ๐Ÿ˜Ž)์˜ ๊ตฌํ˜„ ๋””ํ…Œ์ผ์€ ์•„๋ž˜์™€ ๊ฐ™์Šต๋‹ˆ๋‹ค. *ํ˜น, ๋ฉ˜ํ† ๋‹˜์˜ ์‹œ์„ ์—์„œ ์กฐ์–ธํ•ด์ฃผ์‹ค ๋งŒํ•œ ๊ฐœ์„ ์ ์ด ์žˆ๋‹ค๋ฉด ์กฐ์–ธ ๋ถ€ํƒ๋“œ๋ฆฝ๋‹ˆ๋‹ค*โ€ผ๏ธ (์ตœ๋Œ€ํ•œ ์ž์„ธํžˆ ์ž‘์„ฑํ•œ๋‹ค๊ณ  ์จ๋ดค๋Š”๋ฐ.. ์•„๋ฌด๋ž˜๋„ ๋” ์ž์„ธํ•œ ๋””ํ…Œ์ผ์€ ๋งŒ๋‚˜๋ต™๊ณ  ์„ค๋ช…๋“œ๋ ค์•ผ ํ•  ๋“ฏํ•ฉ๋‹ˆ๋‹ค..)

1) Retrieval Model

  • Train : ์ •๋‹ต(GT) context + Elastic search ์ƒ์œ„ Top4 concat
  • Inference : Elastic search ์ƒ์œ„ Top20 concat
  • Elastic search settings
    • Nori tokenizer(similarity measure: BM25) + ๋ถˆ์šฉ์–ด ์‚ฌ์ „(์กฐ์‚ฌ + ์–ด๋ฏธ))
      • ๋ถˆ์šฉ์–ด ์‚ฌ์ „ ๋งŒ๋“ค ๋•Œ ํ•œ๊ตญ์–ด ์กฐ์‚ฌ ์–ด๋ฏธ๋ฅผ ๊ฒ€์ƒ‰ํ•ด์„œ ๋งŒ๋“ค์—ˆ๋Š”๋ฐ, ์ด๋ž˜๋„ ๊ดœ์ฐฎ์€์ง€ ์•„๋‹ˆ๋ฉด ์œ„ํ‚ค ๋ฐ์ดํ„ฐ์…‹์„ ๊ณ ๋ คํ•ด์„œ ๋งŒ๋“ค์–ด์•ผ ํ•˜๋Š”์ง€
      • ์ผ๋ฐ˜์ ์ธ ๋ถˆ์šฉ์–ด ์‚ฌ์ „์„ ๋งŒ๋“ค์–ด ๋„ฃ์–ด๋„ ์ถฉ๋ถ„ํ•  ๊ฒƒ (์œ„ํ‚ค๊ฐ€ ํŠน๋ณ„ํ•œ ์–ธ์–ด๋กœ ๊ตฌ์„ฑ๋œ ๊ธ€์€ ์•„๋‹ˆ๋‹ˆ๊นŒ)
    • Elastic search ์ตœ์ ํ™” ์‹œ๋„
      • BM25 : ์–ด๋–ค ๊ฒƒ์„ ๋ณด๊ณ (๊ธฐ์ค€) ์–ด๋–ค ๊ฒƒ์„ ์ˆ˜์ •ํ•ด์•ผ ํ•˜๋Š”์ง€ ๋ชจ๋ฅด๊ฒ ์Šต๋‹ˆ๋‹ค BM25๋ฅผ ํ™œ์šฉํ•ด์„œ, ์ถ”๊ฐ€์ ์ธ ์„ฑ๋Šฅ ํ–ฅ์ƒ์„ ์œ„ํ•ด ์–ด๋–ค ํ˜•ํƒœ์˜ ์‹คํ—˜์ด ๊ฐ€๋Šฅํ• ๊นŒ์š”?
      • Elastic search๋ฅผ ๋” ์ž˜ ์“ฐ๊ธฐ ์œ„ํ•œ ๋ฐฉ๋ฒ•์€ ๋˜ ์–ด๋–ค ๊ฒƒ์ด ์žˆ์„๊นŒ์š”?

๐Ÿฏ ๋ฉ˜ํ† ๋‹˜ ๐Ÿฏ

  • Elastic Search๋Š” ๊ธฐ๋ณธ๊ฐ’์ด ๊ต‰์žฅํžˆ ์ข‹์€ ์ƒํƒœ์ด๊ณ , ์ง๊ด€์ ์œผ๋กœ ๋” ์ข‹์•„์ง€๋Š” ๋ฐฉ๋ฒ•์€ ์—†์–ด์„œ ๋‹ค์–‘ํ•œ ๋ฐฉ๋ฒ•์„ ์‹œ๋„ํ•ด๋ณด๋Š” ๊ฒƒ์ด ์ข‹์„ ๊ฒƒ ๊ฐ™๋‹ค.
  • BM25์˜ ์˜ต์…˜์„ ๋ฐ”๊พผ๋‹ค๊ณ  ํ•˜๋”๋ผ๋„ ๋“œ๋ผ๋งˆํ‹ฑํ•œ ํ–ฅ์ƒ์ด ์žˆ์ง€๋Š” ์•Š์„ ๊ฒƒ์ด๋‹ค.
  • ๋ถˆ์šฉ์–ด ์‚ฌ์ „์„ ์ถ”๊ฐ€ํ•œ ๊ฒƒ์€ ๋งค์šฐ ์ข‹์€ ์‹œ๋„์˜€๋‹ค๊ณ  ์ƒ๊ฐํ•œ๋‹ค. ์ผ๋ฐ˜์ ์ธ ๋ถˆ์šฉ์–ด ์‚ฌ์ „์„ ์ถ”๊ฐ€ํ•œ ์‚ฌํ•ญ๋„ ์ถฉ๋ถ„ํžˆ ์ข‹์€ ๊ฒƒ ๊ฐ™๋‹ค.

2) MRC Model

  • *KorQuAD pretrain* ํ›„ KLUE data train* ( ๋‘ ํ›ˆ๋ จ ๋ชจ๋‘ ๊ฐ™์€ ๋ชจ๋ธ์„ ํ™œ์šฉํ–ˆ์œผ๋ฉฐ ๋ชจ๋ธ์˜ ๋””ํ…Œ์ผ์€ ์•„๋ž˜์™€ ๊ฐ™์Šต๋‹ˆ๋‹ค)
    • backbone network : xlm_roberta_large + conv1d + dense layer
    • *conv1d + dense layer* *conv1d(kernel size : 3, padding 1, output_dim : 256) + dense layer(256, 2)* โ‡’ ํ˜„์žฌ *multi_conv1d_layer + output concat* ํ•˜์—ฌ ์„ฑ๋Šฅ ๊ฒ€ํ†  ์ง„ํ–‰ ์ค‘์ž…๋‹ˆ๋‹ค. โ‡’ *vanilla convolution layer* ์™ธ์— *residual, efficientnet, depthwise separable convolution* ๋“ฑ Vision์—์„œ ํ•ซํ•œ ๊ฐœ๋…์„ ํ™œ์šฉํ•ด ๋ณผ ์ˆ˜๋„ ์žˆ์„๊นŒ์š”? ๊ด€๋ จ ์‚ฌ๋ก€๊ฐ€ ์žˆ๋Š”์ง€๋„ ๊ถ๊ธˆํ•ฉ๋‹ˆ๋‹ค.

๐Ÿฏ ๋ฉ˜ํ† ๋‹˜ ๐Ÿฏ

  • Conv1D์€ ์–ด์ฉŒ๋‹ค๊ฐ€ ์“ธ ์ƒ๊ฐ์„ ํ–ˆ๋Š”๊ฐ€? Fine Tuning ๋ฐฉ๋ฒ• ์ค‘ ๋‹ค์–‘ํ•œ ๋ฐฉ๋ฒ•์ด ์žˆ๋Š”๋ฐ, Conv๋Š” ์˜ค๋ฅด๊ธฐ ์–ด๋ ค์šธ ๊ฒƒ์ด๋ผ๊ณ  ์ƒ๊ฐํ–ˆ๋‹ค. (๋ฌผ๋ก  ์ƒํ™ฉ๋งˆ๋‹ค ๋‹ค๋ฅด์ง€๋งŒ) FC Layer๋ฅผ ์‚ฌ์šฉํ–ˆ์—ˆ๋Š”๋ฐ, Drop out์„ ์Ž„๊ฒŒ ๊ฑธ์—ˆ์„ ๋•Œ ์ž˜ ๋๋˜ ๊ฒฝํ—˜์ด ์žˆ๋‹ค.

    • ๋ ˆ์ด์–ด๋ฅผ ์Œ“๋Š” ๊ฒƒ๋„ ๋ฐฉ๋ฒ•์ผ ์ˆ˜๋Š” ์žˆ์œผ๋‚˜, ๋ฐ์ดํ„ฐ๊ฐ€ ์ž‘์€ ๋งŒํผ ์˜ค๋ฒ„ํ”ผํŒ…์„ ์กฐ์‹ฌํ•ด์•ผํ•œ๋‹ค.๋“œ๋ž์•„์›ƒ์„ ์„ธ๊ฒŒ ๊ฑฐ๋Š” ๊ฒƒ์ด ์ข‹์„ ์ˆ˜ ์žˆ์Œ. (0.5, 0.7 ์ •๋„์˜ ์ˆ˜์น˜) ์˜ค๋ฒ„ํ”ผํŒ…์„ ๋ง‰๋Š” ๋ฐฉํ–ฅ์— ๋งค์šฐ ๊ด€์‹ฌ์„ ๊ฐ€์ง€๋Š” ๊ฒƒ์ด ์ข‹์„ ๊ฒƒ ๊ฐ™๋‹ค. (Weigth Decay, Batch Size ํ‚ค์šฐ๊ธฐ ๋“ฑ)
  • Post processing

    • *์กฐ์‚ฌ* ๋ฒ„๋ฆฌ๊ธฐ(์ •๋‹ต ๋งˆ์ง€๋ง‰์— Macab ๊ธฐ์ค€์˜ *์กฐ์‚ฌ* ํฌํ•จ ์‹œ ์ œ๊ฑฐ) + *ํ›„์ฒ˜๋ฆฌ*
    • ํ›„์ฒ˜๋ฆฌ ๋””ํ…Œ์ผ (์ž˜ ์ฒ˜๋ฆฌ๋˜์ง€ ์•Š๋Š” ์กฐ์‚ฌ ์žฌ์ฒ˜๋ฆฌ)
      1. answer ๋งˆ์ง€๋ง‰ ๊ธ€์ž๊ฐ€ "์˜"์ธ์ง€ ํ™•์ธ ํ›„ ์กฐ์‚ฌ์ผ ๊ฒฝ์šฐ ์ œ๊ฑฐ
      2. answer์˜ ๋งˆ์ง€๋ง‰ token์ด "์—์„œ", "๋Š”", "์€", "์—" ๋“ฑ ์กฐ์‚ฌ์ผ ๊ฒฝ์šฐ ์ œ๊ฑฐ

๐Ÿฏ ๋ฉ˜ํ† ๋‹˜ ๐Ÿฏ

  • fine-tuning layer์˜ ๊ตฌ์„ฑ ์‹คํ—˜์„ ํ•ด๋ณธ ์ ์ด ์žˆ๋Š”๋ฐ, ๋ชจ๋ธ์˜ ๊นŠ์ด ๋Œ€์‹  ๋„ˆ๋น„๋ฅผ ํ‚ค์šฐ๊ณ  ๋“œ๋ž์•„์›ƒ์„ ์„ธ๊ฒŒ(0.5๋ณด๋‹ค ํฌ๊ฒŒ) ๊ฑฐ๋Š” ๊ฒƒ์ด ๋„์›€์ด ๋˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.

2๏ธโƒฃ Modeling ๊ด€๋ จ(feat.๋ฆฌ๋”๋ณด๋“œ)

1) K๋ฅผ ๋Š˜๋ฆด ์ˆ˜๋ก LB ์„ฑ๋Šฅ์ด ์˜ฌ๋ผ๊ฐ€๋Š” ๋ฌธ์ œ

Retrieval model์˜ top K๋ฅผ ๋Š˜๋ฆฌ๋ฉด ๋Š˜๋ฆด ์ˆ˜๋ก ์ข‹์€๋ฐ...(inference ๊ณผ์ •์—์„œ Top K๋ฅผ 9โ†’20์œผ๋กœ ๋Š˜๋ฆฌ๋‹ˆ EM ๊ธฐ์ค€ 2% ์ƒ์Šน) ํ˜น, train๊ณผ public leader board ๋ฐ์ดํ„ฐ ์…‹์— ๊ฒน์น˜๋Š” context๊ฐ€ ์žˆ๋Š” ๊ฒƒ์ด ์•„๋‹Œ์ง€ ์˜์‹ฌ๋ฉ๋‹ˆ๋‹ค. ์ด๋ ‡๊ฒŒ ๋˜๋ฉด ์ฒ˜์Œ ๋ณด๋Š” context์—์„œ์˜ ์„ฑ๋Šฅ์ด ๊ฑฑ์ •๋˜๋Š”๋ฐ, private test data๋ฅผ ํ™•์ธํ•  ์ˆ˜ ์—†์œผ๋‹ˆ ํ˜„์žฌ์˜ ์ตœ๊ณ  ์„ฑ๋Šฅ์„ ์‹ ๋ขฐํ•ด๋„ ๋ ์ง€ ๋ชจ๋ฅด๊ฒ ์Šต๋‹ˆ๋‹ค. ๋ฉ˜ํ† ๋‹˜ ์ƒ๊ฐ์€ ์–ด๋– ์‹ ์ง€์š”?

์œ„ ์งˆ๋ฌธ๊ณผ ๊ด€๋ จํ•˜์—ฌ ๋‹ค์Œ์˜ ๊ฐ€์„ค๊ณผ ๊ฐ๊ฐ์˜ ๋…ผ๋ฆฌ๊ฐ€ ๋งž๋Š”์ง€ ๊ถ๊ธˆํ•ฉ๋‹ˆ๋‹ค. ๊ฒ€ํ†  ๋ถ€ํƒ๋“œ๋ฆฝ๋‹ˆ๋‹ค!

  • ๊ฐ€์„ค : Passage๋ฅผ ๋งŽ์ด ๋ณผ ์ˆ˜๋ก ์ •๋‹ต์„ ์ฐพ์„ ํ™•๋ฅ ์ด ์˜ค๋ฅผ ๊ฒƒ์ด๋ผ๊ณ  ์ƒ๊ฐํ•œ๋‹ค.

    (์ •๋‹ต๊ณผ ๋ฌด๊ด€ํ•œ Passage(Noise)์— ์˜ํ•œ ์„ฑ๋Šฅ ๊ฐ์†Œ๋ณด๋‹ค, ๋งŽ์€ passage๋ฅผ ์ฝ๊ณ  ์ •๋‹ต์„ ์ฐพ์„ ๋•Œ์˜ ์„ฑ๋Šฅ ์ฆ๊ฐ€์˜ ํญ์ด ํ›จ์”ฌ ํด ๊ฒƒ์ด๋ผ๊ณ  ์ƒ๊ฐํ•œ๋‹ค.)

    1. ์–ด์ฐจํ”ผ ์ƒ๊ด€ ์—†๋Š” Passage๋‚˜ ๋ฌธ์žฅ์— ๋Œ€ํ•ด์„œ๋Š” ์–ด์ฐจํ”ผ output Logit ๊ฐ’์ด ๋‚ฎ๊ฒŒ ๋‚˜์˜ฌ ๊ฒƒ์ด๋‹ค.
    2. Noise์— ํ•ด๋‹นํ•˜๋Š” ์ •๋ณด๋“ค์€ ์ž์ฒด์ ์œผ๋กœ ๊ฑฐ๋ฅผ ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋ผ ์ƒ๊ฐํ•œ๋‹ค.
    3. ๋งŽ์€ Passage๋ฅผ ๋‹ค ๊ฒ€ํ† ํ•˜๋ฉด, ์ •๋‹ต์ด ์žˆ๋Š” ์ •๋‹ต Passage๋ฅผ ์ฐพ์„ ํ™•๋ฅ ์ด ๋†’์„ ๊ฒƒ์ด๋‹ค. (Top k๋ฅผ ๋ณธ๋‹ค๊ณ  ํ•  ๋•Œ k๋ฅผ ๋Š˜๋ฆฐ๋‹ค๋ฉด ๊ทธ ์•ˆ์— ์ •๋‹ต passage๊ฐ€ ๋“ค์–ด๊ฐˆ ํ™•๋ฅ ์ด ๋†’์œผ๋‹ˆ๊นŒ)
    4. ์ฆ‰, ๋งŽ์€ Passage์— ๋Œ€ํ•ด Reading์„ ํ•˜๋ฉด, ๊ฒฐ๊ตญ answer์„ ์ฐพ์„ ํ™•๋ฅ ์ด ๋†’์•„์งˆ ๊ฒƒ์ด๋‹ค.

๐Ÿฏ ๋ฉ˜ํ† ๋‹˜ ๐Ÿฏ

  • Train๊ณผ Public์˜ Data๊ฐ€ ๊ฒน์น˜์ง€๋Š” ์•Š๋Š” ๊ฒƒ์œผ๋กœ ์•Œ๊ณ  ์žˆ๋‹ค. Top K๊ฐ€ ๋†’์•„์กŒ์„ ๋•Œ Retrival์˜ Error๊ฐ€ ์ ์–ด์ ธ์„œ๋ผ๊ณ  ์ƒ๊ฐํ•จ.
    • ์ตํšจ : Retirval Error๊ฐ€ ์ค„์–ด๋“œ๋Š” ๋งŒํผ, Reading Error๋„ ๋™์‹œ์— ์ค„์–ด๋“ค์–ด์„œ, ๊ฑฑ์ •์ด ๋œ๋‹ค. (Public์ชฝ์— Train์˜ Data๊ฐ€ Licking ๋์„๊นŒ๋ด ๊ฑฑ์ •์ด๋‹ค.)
      • ๊ฒน์นœ๋‹ค๊ณ  ํŒ๋‹จ ๋˜๋Š” ๊ฒƒ๋Š” Data๋ฅผ Train์—์„œ ์ œ์™ธํ•˜๊ณ  ํ•™์Šต ์‹œํ‚ค๋ฉด, ์œ„์™€ ๊ฐ™์€ ๋ฌธ์ œ๋ฅผ ๊ฒ€ํ† ํ•ด๋ณผ ์ˆ˜ ์žˆ์„ ๊ฒƒ ๊ฐ™๋‹ค. ๊ทธ๋ฆฌ๊ณ , ์ตœ์ข…์œผ๋กœ ํ•™์Šต ๋ฐ ์ œ์ถœ ํ•  ๋•Œ์—๋Š”, ์ด ๋ฐ์ดํ„ฐ์™€ Val Data๋“ฑ์„ ์ถ”๊ฐ€ํ•ด์„œ ํ•œ๊บผ๋ฒˆ์— ํ•™์Šต์‹œํ‚ค๋Š” ๊ฒƒ์ด ์ข‹์„ ๊ฒƒ ๊ฐ™๋‹ค.
  • (๊ฐ€์„ค์— ๋Œ€ํ•ด์„œ๋Š”)๋„ค ์ œ ์ƒ๊ฐ์—๋„ ์ด ๊ฐ€์„ค์ด ๋งž๋Š” ๊ฒƒ ๊ฐ™์•„์š”. ๋‹ค๋งŒ ์ตœ์ ์˜ k๋ฅผ ์ฐพ์•„์•ผ ํ•  ๊ฒƒ.
    • ํ˜„๊ทœ : Top K๋ฅผ ๋ฌด์กฐ๊ฑด ์˜ฌ๋ฆฌ๋ฉด ์ข‹์€๊ฒŒ ๋งž์„๊นŒ?
      • Retrieval์ด Reader์—๊ฒŒ ๋ถ€๋‹ด์„ ์ „๊ฐ€ํ•˜๋Š” ๊ฒƒ์ด๋‹ค. Reader๊ฐ€ ์†Œํ™”ํ•  ์ˆ˜ ์—†๋Š” ์ˆ˜์ค€์˜ K๋ฅผ ์ „๋‹ฌํ•˜๋ฉด, ์„ฑ๋Šฅ์ด ๋–จ์–ด์งˆ ๊ฒƒ์ด๋‹ค. ๊ทธ๋Ÿฌ๋‹ˆ, ์ ์ •์„ ์„ ์ฐพ๋Š”๊ฒŒ ์ค‘์š”ํ•  ๋“ฏ ํ•˜๋‹ค.
      • Reader์˜ ์„ฑ๋Šฅ์„ ํ™•์ธํ•ด๋ณด๊ณ  ์‹ถ์œผ๋ฉด, ์ถœ๋ ฅํ•ด์„œ ๋ณด๋Š” ๊ฒƒ๋„ ์ข‹์„ ๊ฒƒ ๊ฐ™๋‹ค.

2) Wiki Data๋ฅผ Passage๋กœ ๋‚˜๋ˆ„์–ด์„œ Elastic Search

wiki context๋ฅผ passage๋‹จ์œ„๋กœ ๋‚˜๋ˆ„์–ด Elastic search data ๊ตฌ์„ฑํ•˜์—ฌ ์ ์šฉํ–ˆ์„ ๋•Œ validation score๋Š” ๋” ์ข‹์•˜๋Š”๋ฐ(EM ๊ธฐ์ค€ 2%, F1 ์Šค์ฝ”์–ด ๊ธฐ์ค€ 3%), public leader board์—์„œ๋Š” ๋„ˆ๋ฌด ๋–จ์–ด์กŒ์Šต๋‹ˆ๋‹ค(EM๊ธฐ์ค€ 50%๋Œ€, ์ตœ๊ณ  ์„ฑ๋Šฅ ๋Œ€๋น„ 13% ํ•˜๋ฝ).. ๋ฒ„๋ฆฌ๊ธด ์•„๊นŒ์šด๋ฐ.. ์–ด๋–ค ๋ฐฉ์‹์œผ๋กœ ๊ฐœ์„ ํ•˜๋ฉด ์ข‹์„๊นŒ์š”? ์•„๋ž˜๋Š” wiki context๋ฅผ passage๋‹จ์œ„๋กœ ์ž๋ฅธ ๋ฐฉ๋ฒ•์— ๋Œ€ํ•œ ๋””ํ…Œ์ผ(์ฐธ๊ณ ์šฉ)๊ณผ ์ €ํฌ๊ฐ€ ์ƒ๊ฐํ•ด๋ณธ ํ•ด๋‹น ์ ‘๊ทผ์˜ ๊ฐœ์„  ๋ฐฉ๋ฒ•์ž…๋‹ˆ๋‹ค. ์ถ”๊ฐ€๋กœ ์˜๊ฒฌ์ด ์žˆ์œผ์‹œ๋‹ค๋ฉด ์กฐ์–ธ ๋ถ€ํƒ๋“œ๋ฆฝ๋‹ˆ๋‹ค.

retriever ์„ฑ๋Šฅ์ด 1% ๋–จ์–ด์ง€๊ณ (top1 ๊ธฐ์ค€), reader ์„ฑ๋Šฅ์€ validation set ๊ธฐ์ค€์œผ๋กœ ๋งŽ์ด ์˜ค๋ฆ„ โ‡’ validation set โ‰  public ๋ฆฌ๋”๋ณด๋“œ dataset ๋ฌธ์ œ โ‡’ passage๋กœ ๋‚˜๋ˆ„๊ณ  ๋‚˜์„œ train(top5) & inference(top12) ๋‹จ๊ณ„์—์„œ top-k ์–ด๋–ป๊ฒŒ ํ–ˆ๋Š”์ง€? โ‡’ ๊ธฐ์กด๊ณผ ๋˜‘๊ฐ™์ด ์คŒ (์งง์€ ๋‹จ์œ„๋กœ ๋ดค์„ ๋•Œ reader์—์„œ ๋” ์ข‹์€ ์„ฑ๋Šฅ์„ ๋ณด์ด์ง€ ์•Š์„๊นŒ ํ•˜๋Š” ์ƒ๊ฐ์œผ๋กœ ์ž๋ฅธ ๊ฑฐ๋ผ) โ‡’ ํ™•์‹ ์€ ์•ˆ ๊ฐ€์ง€๋งŒ ์‹คํ—˜์€ ํ•ด๋ณด๊ธธ.. โ‡’ ์ตœ๋Œ€ 2๊ฐœ๋กœ ๋‚˜๋ˆ” (๋ณ„๋กœ ์•ˆ ๋‚˜๋ˆด๋„ค์š”...) โ‡’ ์ง€๊ธˆ๊นŒ์ง„ ๊ณ„์† promisingํ•œ ๊ฒฐ๊ณผ๋ฅผ ๋ณด์˜€์œผ๋‹ˆ ๊ณ„์† ํƒ๊ตฌํ•ด๋ณด๋Š” ๊ฑธ ์ถ”์ฒœ (top k๋ฅผ ๋ฐ”๊ฟ”๋ณด๋Š” ๊ฒƒ ๋“ฑ...) โ‡’ ์ˆ˜์ง€๋‹˜ ํž˜๋“ค๋ฉด ๊ทธ๋งŒ ์จ์š”! ๋‚˜์ค‘์— ์˜์ƒ์œผ๋กœ ๋ณด๊ณ  todo์— ์ •๋ฆฌํ•˜๋ฉด ๋ ๊ฒƒ ๊ฐ™์Œ!(๊ทธ๋ฆฌ๊ณ  ํ˜„๊ทœ๋‹˜์ด ์จ์ฃผ๊ณ ์žˆ์Œ)ใ…Ž

  • wiki context๋ฅผ passage๋‹จ์œ„๋กœ ๋‚˜๋ˆ„์–ด Elastic search data ๊ตฌ์„ฑ

    โ€ป ์ ์šฉ ๊ทผ๊ฑฐ ๋ฐ ๋ฐฐ๊ฒฝ : ์œ„ figure๋Š” Top N๊ฐœ์˜ context๋ฅผ ๋ฝ‘์€ ํ›„ paragraph level์—์„œ query์™€์˜ ์œ ์‚ฌ๋„๋ฅผ ๊ณ ๋ คํ•˜์—ฌ ์„ ๋ณ„์ ์œผ๋กœ MRC๋ฅผ ์ˆ˜ํ–‰ํ•˜๋Š”๋ฐ, ์ด๋ฅผ ์šฐ๋ฆฌ ๋ชจ๋ธ์— ๋” ์‰ฝ๊ฒŒ ์ ์šฉํ•˜๊ธฐ ์œ„ํ•ด์„œ Wiki data ์ž์ฒด๋ฅผ ๊ฐ paragraph(passage)๋กœ ๋‚˜๋ˆ ์„œ Elastic Search์— ์ ์žฌํ•˜์—ฌ ํ™œ์šฉํ•˜๊ธฐ๋กœ ํ•จ

    1. passage๋ฅผ ์ž๋ฅด๋Š” ๊ธฐ์ค€์€ [Korean Sentence splitter(KSS)](https://github.com/likejazz/korean-sentence-splitter) ์‚ฌ์šฉ, overlap์€ ํ™œ์šฉํ•˜์ง€ ์•Š์Œ
    2. context length๊ฐ€ 1,000์ด ๋„˜๋Š” context์— ๋Œ€ํ•ด ๋ฌธ์žฅ ๋‹จ์œ„๋กœ ๋‚˜๋ˆ„๊ณ  ์ „์ฒด ๊ธธ์ด์˜ ์ ˆ๋ฐ˜์— ๊ฐ€๊น๋„๋ก ๋ฌธ์žฅ๋“ค์„ part 1, 2๋กœ ๋‚˜๋ˆ”
    3. ์—ฌ๊ธฐ์„œ train ๋ฐ validation์˜ GT answer index๊ฐ€ ์•ฝ๊ฐ„ ๋ณ€ํ˜•๋จ (KSS์˜ ํŠน์„ฑ์— ์˜ํ•ด ๋ฌธ์žฅ ์‚ฌ์ด ๊ณต๋ฐฑ์ด ์‚ฌ๋ผ์ง€๊ฑฐ๋‚˜ ์ƒ๊น€) โ‡’ raw context์˜ index์™€ ์œ„์น˜์ƒ ๊ฐ€์žฅ ๊ฐ€๊นŒ์šด answer์„ GT๋กœ ์ฒ˜๋ฆฌ โ‡’ ์—ฌ๊ธฐ์„œ GT index๊ฐ€ ์˜ค์—ผ๋  ๊ฐ€๋Šฅ์„ฑ์ด ์žˆ์–ด์„œ ๋” ์ข‹์€ ๋ฐฉ๋ฒ•์ด ์žˆ์œผ๋ฉด ๋ฐ”๊ฟ”์ฃผ๊ณ  ์‹ถ์Œ โ‡’ ํ˜น, offset mapping ๋“ฑ์„ ํ™œ์šฉํ•  ์ˆ˜ ์žˆ์„์ง€ ๊ณ ๋ ค ์ค‘
  • passage ๋‹จ์œ„ ์ ‘๊ทผ ๊ฐœ์„  ๋ฐฉ์•ˆ

    1. (epoch์„ ์ค„์—ฌ์„œ ์‹คํ—˜ํ–ˆ๋Š”๋ฐ) ์ด์ „ ์ตœ๊ณ  ๊ธฐ๋ก๊ณผ ๋˜‘๊ฐ™์ด ๋งž์ถฐ์„œ ๋น„๊ตํ•ด์•ผ ํ•  ๊ฒƒ ๊ฐ™๋‹ค
    2. context๋ฅผ passage ๋‹จ์œ„๋กœ ๋‚˜๋ˆ„๊ณ , retrieval ๊ฒฐ๊ณผ๋ฅผ Top K ๊ธฐ์ค€์œผ๋กœ concatํ•˜๊ฒŒ ๋˜๋ฉด raw context์˜ ๋ฌธ์žฅ ์ˆœ์„œ๊ฐ€ ๋‹ฌ๋ผ์งˆ ์ˆ˜ ์žˆ๋Š”๋ฐ, ์ด ๋ถ€๋ถ„๋„ ๊ณ ๋ คํ•˜๋ฉด ์ข‹์„ ๊ฒƒ ๊ฐ™๋‹ค. raw context๋ฅผ ํ™œ์šฉํ•˜๋˜ inference์‹œ์—๋งŒ ์ž๋ฅธ passage๋ฅผ ํ™œ์šฉํ•˜์—ฌ MRC model์— ํƒœ์šฐ๋Š” ๊ฒƒ์€ ์–ด๋–จ์ง€?
    3. ํ˜„์žฌ retrieval์—์„œ ๋ฝ‘์•„์˜ค๋Š” context ํ˜น์€ passage ๋“ค์„ concatํ•˜์—ฌ ์‚ฌ์šฉํ•จ์œผ๋กœ์จ Elastic search์—์„œ์˜ similarity๋ฅผ ์ „ํ˜€ ํ™œ์šฉํ•˜๊ณ  ์žˆ์ง€ ์•Š์€๋ฐ, ์ด๋ฅผ ํ™œ์šฉํ•˜๋ฉด ๋” ์ข‹์€ ๋ชจ๋ธ์ด ๋  ์ˆ˜ ์žˆ์ง€ ์•Š์„๊นŒ?
    4. ํ˜„์žฌ์ฒ˜๋Ÿผ concatํ•˜์—ฌ ํ™œ์šฉํ•˜๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ, ๋”ฐ๋กœ MRCํ•˜๋˜, ์œ„ figure์˜ Answer aggregation์„ ์ ์šฉํ•ด๋ณด๋ฉด ์–ด๋–จ์ง€? ์•„๋ž˜ ํ•ด๋‹น ๋ฌธํ—Œ *2.2 Answer Aggregation ๋ถ€๋ถ„* Ranking Paragraphs for Improving Answer Recall in Open-Domain Question Answering.pdf

๐Ÿฏ ๋ฉ˜ํ† ๋‹˜ ๐Ÿฏ

  • Retrieval ์„ฑ๋Šฅ or Reader์˜ ์„ฑ๋Šฅ ์ค‘ ์–ด๋””์—์„œ ํ•˜๋ฝ์ด ์žˆ์—ˆ๋Š”์ง€ ํ™•์ธํ•ด๋ณด์•˜๋Š”๊ฐ€?
    • ์ตํšจ : Retireval์˜ ์„ฑ๋Šฅ์€ Top1 ๊ธฐ์ค€ 1% ๋–จ์–ด์ง€๊ณ (Top12 ๊ธฐ์ค€์€ ๊ฑฐ์˜ ๋™์ผ), Reader์˜ ์„ฑ๋Šฅ์€ Val ๊ธฐ์ค€ 3%์˜ฌ๋ž์—ˆ๋‹ค. Public LB์—์„œ๋Š” ๊ฒฐ๊ตญ 3~4% ๋–จ์–ด์กŒ๋‹ค.
      • ์ด๋Ÿฌํ•œ ํ˜„์ƒ์€ Val Dataset๊ณผ, Public Dataset์˜ ๊ตฌ์„ฑ์ด ๋‹ค๋ฅด๋‹ค๋Š” ์˜๋ฏธ์ด๋‹ค.
    • ์žฌํฌ : ํ•™์Šต ํ•  ๋•Œ K๋ฅผ ๋” ๋†’์—ฌ์„œ ํ•™์Šตํ•ด๋ณด๋Š”๊ฒŒ ์˜๋ฏธ๊ฐ€ ์žˆ์„๊นŒ?
      • ์‰ฝ๊ฒŒ ๋‹ต๋ณ€ํ•˜๊ธฐ๋Š” ์–ด๋ ต๋‹ค.
  • ์ค‘๊ฐ„ ์ชฝ์— ์ •๋‹ต์ด ์žˆ๋Š” ๊ฒฝ์šฐ๋Š” ์–ด๋–ป๊ฒŒ ํ•˜์˜€๋Š”๊ฐ€?
    • ์ตํšจ : ๋ฌธ์žฅ ๋‹จ์œ„๋กœ ์ž๋ฅด๊ธฐ ๋•Œ๋ฌธ์—, ์ •๋‹ต์ด ์ž˜๋ฆฌ๋Š” ์ผ์€ ์—†์„ ๊ฒƒ ๊ฐ™๋‹ค.
  • ์žฌํฌ : Concat๋ณด๋‹ค๋Š” Aggregation์„ ํ•˜๋˜๋ฐ, ์ด ๋ฐฉ๋ฒ•์ด ๋” ๋งž์„๊นŒ์š”?
    • ์ผ๋ฐ˜์ ์œผ๋กœ๋Š” Aggregation์„ ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ๋งŽ์ด ์‚ฌ์šฉํ•œ๋‹ค. ์ด ๊ฒฝ์šฐ Score๋ฅผ ์กฐํ•ฉํ•˜๋Š” ๊ฒฝ์šฐ๋„ ์žˆ๊ณ , Reader๋งŒ ์‚ฌ์šฉํ•˜๋Š” ๊ฒฝ์šฐ๋„ ์žˆ๋‹ค.
  • ์ตํšจ : Score๋ฅผ ์กฐํ•ฉํ•˜๋Š” ๊ฒฝ์šฐ์— ์„ฑ๋Šฅ์ด ๋–จ์–ด์ง€๋Š” ๊ฒฝํ—˜์ด ์žˆ์—ˆ๋‹ค. ํ†ต์ƒ ์–ด๋–ป๊ฒŒ Score๋ฅผ ์กฐํ•ฉํ•˜๋Š”๊ฐ€?
    • ๋ณดํ†ต์€ ๊ฐ€์ค‘์น˜๋ฅผ ๋„ฃ๊ณ , ํ•˜์ดํผ ํŒŒ๋ผ๋ฏธํ„ฐ๋กœ ํ•ด์„œ ์ตœ์ ์˜ ๊ฐ’์„ ์ฐพ์•„๋‚˜๊ฐ€๋Š” ๊ฒƒ ๊ฐ™๋‹ค. ํ†ต์ƒ Reader์ชฝ์— ์กฐ๊ธˆ ๋” ํž˜์„ ์ฃผ๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ์€ ๊ฒƒ์œผ๋กœ ์•Œ๊ณ  ์žˆ๋‹ค.
  • ํƒœ์–‘ : ์ง€๊ธˆ ์šฐ๋ฆฌ๊ฐ€ ํ•˜๋Š” Concat์˜ ๋ฐฉ์‹์€ ์—ฌ๋Ÿฌ Passage๋ฅผ ๋ฌถ์–ด์„œ ํ•˜๋‚˜์˜ Context์ฒ˜๋Ÿผ ์ƒ๊ฐํ•˜๊ณ  ํ•œ๋ฒˆ์˜ Reading์„ ์ˆ˜ํ–‰ํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ๊ทธ๋ž˜์„œ ๊ทธ๋Ÿฐ์ง€ ์ •๋‹ต์ด ์•„๋‹Œ Token์—์„œ๋„ Logit์ด ๋†’๊ฒŒ ๋‚˜์˜จ๋‹ค.
    • Softmax๋ฅผ ํ•˜๋Š” ๊ฒฝ์šฐ, ์˜ค๋‹ต์ด์–ด๋„ Logit์ด ๋†’๊ฒŒ ๋‚˜์˜ค๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ๋‹ค. ์ง€์ˆ˜์ ์œผ๋กœ ๊ฐ’์„ ์ถœ๋ ฅํ•˜๊ธฐ ๋•Œ๋ฌธ์—, ๋งฅ์‹œ๋ฉˆ ๊ฐ’์ด ๋‹ค๋ฅธ ๊ฐ’์— ๋น„ํ•ด ๋งค์šฐ ๋†’์•„์ง€๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ๋‹ค. (์˜ค๋‹ต์ด๋”๋ผ๋„) ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์€ ๊ฑฐ์˜ ์ „๋ถ€ ํ™•๋ฅ ๊ฐ’์„ ๋†’๊ฒŒ ๋‚ด๋Š” ๊ฒฝํ–ฅ์ด ์žˆ๋‹ค. (์˜ค๋‹ต์ด๋”๋ผ๋„)
    • (Softmaxโ‰ proba) out of distribution : ๋ฌธ์–ด์ฒด๋กœ ํ•™์Šต ์‹œํ‚ค๊ณ , ๊ตฌ์–ด์ฒด๋ฅผ ์ ์šฉํ•˜๋Š” ๊ฒฝ์šฐ โ‡’ ๋ชจ๋ธ ์„ฑ๋Šฅ์ด ์ข‹์ง€ ์•Š๋‹ค๋Š” ๊ฒƒ์„ ๋ฏธ๋ฆฌ ์˜ˆ์ƒํ•˜๊ณ  ์ด๋ฅผ detection (ํ‹€๋ฆด ๊ฒƒ ๊ฐ™์€ ๊ฒƒ์˜ confidence๋ฅผ ๋‚ฎ๊ฒŒ ์ฃผ๋Š” ๊ฒƒ)
    • Temperature๋ฅผ ๋†’์ด๋ฉด ํ™•๋ฅ  ๊ฐ’์ด ๋†’์€ ๊ฒƒ๊ณผ ๋‚ฎ์€ ๊ฒƒ์˜ ์ฐจ์ด๊ฐ€ ๋” ๋ฒŒ์–ด์ง
      • ์–ด๋Š ์ •๋„ Temperature?
        • ๋†’์ด๋ฉด ๋†’์ผ ์ˆ˜๋ก ์„ฑ๋Šฅ์ด ์ข‹์•„์ง€๋Š” ๊ฒฝ์šฐ๊ฐ€ ์žˆ์Œ
          • ์„ฑ๋Šฅ = OOD๋ฅผ detectํ•˜๋Š” ์„ฑ๋Šฅ
        • ์ผ๋‹จ ๋งŽ์ด ๋†’์—ฌ๋ณด๋Š” ๊ฒƒ ์ถ”์ฒœ!
        • "๋งŽ์ด"์˜ ๊ธฐ์ค€ = 10, 20, 30... ๋…ผ๋ฌธ์—์„  ๋ฐฑ ๋‹จ์œ„๊นŒ์ง€ ๋†’์˜€์ง€๋งŒ ๊ทธ๊ฑด ์ข€ ๋น„ํ˜„์‹ค์ ์ด๋ผ๊ณ  ์ƒ๊ฐ
        • ์‹œ๊ฐ„ ๊ด€๊ณ„ ์ƒ ๋Œ€ํšŒ ๋‚ด์—์„œ ํ•˜๋Š” ๊ฑด ๋ฌด๋ฆฌ์ผ ๊ฑฐ ๊ฐ™๊ณ  ์ƒ์‹ ์ •๋„๋กœ ์ฐธ๊ณ ํ•˜๊ธธ!

3๏ธโƒฃ ๊ธฐํƒ€ ์งˆ๋ฌธ

1) ์ƒˆ๋กœ์šด ์‹œ๋„์— ๋Œ€ํ•œ ๊ฐ€๋Šฅ์„ฑ ํŒ๋‹จ ๊ธฐ์ค€

sparse retrieval๋กœ top 20์˜ context๋ฅผ ๊ณ ๋ฅธ ํ›„ dense retrieval๋ฅผ ํ†ตํ•ด GT context๋ฅผ ์ฐพ๋Š” ๋ฐฉ์‹์˜ retrieval์„ ๋งŒ๋“ค๊ณ  ์žˆ์ง€๋งŒ ๋‹จ์ผ sparse retrieval ๋ณด๋‹ค ์„ฑ๋Šฅ ๊ฐœ์„ ์ด ์•ˆ๋˜๊ณ  ์žˆ๋Š” ์ƒํ™ฉ์ž…๋‹ˆ๋‹ค. ํ•˜์ง€๋งŒ retrieval ์ž์ฒด์˜ ์„ฑ๋Šฅ์€ ์กฐ๊ธˆ์”ฉ ๊ฐœ์„ ๋˜๊ณ  ์žˆ์–ด์„œ ๋Œ€ํšŒ๋ฅผ ์œ„ํ•ด ๊ณ„์†ํ•ด์„œ ์„ฑ๋Šฅ์„ ๋†’์ด๊ธฐ ์œ„ํ•œ ๋…ธ๋ ฅ์„ ํ•˜๋Š” ๊ฒƒ์ด ๋งž๋Š” ๊ฑด์ง€ ์˜๋ฌธ์ž…๋‹ˆ๋‹ค. (์†Œ์š” ์‹œ๊ฐ„ : ์•ฝ 2์ฃผ) cf ) Top 1 accuracy โ†’ elastic search : ์•ฝ 70% / proposed retrieval : 56%

  • ๋ง๋ถ™์—ฌ์„œ, ๊ผญ ์œ„ ์‚ฌ๋ก€๊ฐ€ ์•„๋‹ˆ๋”๋ผ๋„, ์–ด๋–ค ์ƒˆ๋กœ์šด ๋ชจ๋ธ์„ ๊ตฌํ˜„ํ•˜๊ฑฐ๋‚˜ ์ ‘๊ทผ ๋ฐฉ์‹์„ ์‹œ๋„ํ•  ๋•Œ, (์—ด์‹ฌํžˆ ๋ญ”๊ฐ€ ํ•œ๋‹ค๊ณ  ํ•ญ์ƒ ์„ฑ๋Šฅ์ด ์ž˜ ๋‚˜์˜ค๋Š”๊ฑด ์•„๋‹Œ์ง€๋ผ) ์–ด๋Š ์ •๋„ ํˆฌ์žํ•˜๊ณ  ํฌ๊ธฐํ•ด์•ผ ํ•˜๋Š”์ง€ '๋Œ€ํšŒ'๋ผ๋Š” ์ƒํ™ฉ ํŠน์„ฑ ์ƒ ๊ณ ๋ คํ•˜๋ฉด ๋” ์ข‹์„ ๋ถ€๋ถ„์ด ์žˆ์„์ง€ ์–ด๋–ค ๊ธฐ์ค€์œผ๋กœ ์ž˜๋๋‹ค, ์•ˆ๋๋‹ค๋ฅผ ํŒ๋‹จ ํ•ด์•ผํ•˜๋Š”์ง€ ๋น„๋‹จ ์„ฑ๋Šฅ๋ฟ ์•„๋‹ˆ๋ผ ๋‹ค๋ฅธ ๊ธฐ์ค€์ด ์žˆ์„์ง€ โ‡’ ์งˆ๋ฌธ์ด ์ฐธ ์ถ”์ƒ์ ์ธ๋ฐ ๋ฉ˜ํ† ๋‹˜๊ป˜์„œ ๋– ์˜ค๋ฅด์‹œ๋Š” ๋Œ€๋กœ ๋‹ต๋ณ€ํ•ด์ฃผ์‹œ๋ฉด ๊ฐ์‚ฌํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค! ใ…Žใ…Ž

๐Ÿฏ ๋ฉ˜ํ† ๋‹˜ ๐Ÿฏ

  • Deep Retrieval๊ณผ Elastic Search์˜ Score๋ฅผ ์กฐํ•ฉํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•์€ ์—†๊ฒ ๋Š”๊ฐ€?
    • Elastic Search๊ฐ€ ์ž์ฃผ ํ‹€๋ฆฌ๋Š” ์œ ํ˜•์˜ ๋ฌธ์ œ๊ฐ€ ์žˆ๋‹ค๊ณ  ํ•œ๋‹ค๋ฉด, Deep Retrieval์ด ์ด ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ์„์ง€๋„ ๋ชจ๋ฅธ๋‹ค. ์ด๋Ÿฐ ์‹์œผ๋กœ ์•™์ƒ๋ธ”์„ ํ•ด๋ณด๋Š” ๊ฒƒ์€ ์–ด๋–จ๊นŒ?
    • ํŒŒ์ดํ”„๋ผ์ธ์˜ ํ˜•ํƒœ๋กœ ๊ตฌ์„ฑํ•˜๋Š” ๊ฒƒ ๋ณด๋‹ค, Elastic Search์— ์กฐ๊ธˆ ๋” ๋ฌด๊ฒŒ๋ฅผ ๋‘๋˜, Deep Retrival์„ ์–น๋Š” ํ˜•ํƒœ๋กœ ์‚ฌ์šฉํ•˜๋Š”๊ฒŒ ์–ด๋–จ๊นŒ ํ•œ๋‹ค.
      • ์žฌํฌ : ์–ด๋–ป๊ฒŒ ์•™์ƒ๋ธ”ํ•˜๋ฉด ์ข‹์„๊นŒ์š”?
        • ๋ง์”€ํ•˜์…จ๋˜ ๊ฒƒ ์ฒ˜๋Ÿผ, ์œ ๋‹ˆ์˜จ์„ ํ•˜๋Š” ๊ฒƒ๋„ ์ข‹์„ ๊ฒƒ์ด๋‹ค. ๋‘ ๋ฐฉ๋ฒ•์€ Sparse์™€ Dense์˜ ํ˜•ํƒœ์ด๊ธฐ ๋•Œ๋ฌธ์—, ๊ฐ๊ฐ์˜ ์žฅ์ ์ด ํ™•์‹คํžˆ ์žˆ๋‹ค. Sparse๋Š” ๋‹จ์–ด๊ฐ€ ๊ฒน์น˜๋Š” ๊ฒฝ์šฐ๋ฅผ ์ž˜ ์ฐพ๊ณ , Dense๋Š” ์˜๋ฏธ๊ฐ€ ๊ฒน์น˜๋Š” ๊ฒฝ์šฐ๋ฅผ ์ž˜ ์ฐพ๋Š”๋‹ค. ๊ทธ๋ ‡๊ธฐ ๋•Œ๋ฌธ์—, ๋‘˜์„ ๊ฐ™์ด ํ™•์ธํ•˜๋ฉด ์„œ๋กœ์˜ ์žฅ์ ์„ ์–ป์„ ์ˆ˜ ์žˆ์„ ๊ฒƒ ๊ฐ™๋‹ค.
          • ์žฌํฌ : ๊ทธ๋Ÿฌ๋ฉด, ๊ฐ๊ฐ์˜ ์œ ํ˜•์— ๋”ฐ๋ผ์„œ ์žฅ์ ๋งŒ ๋ฝ‘์•„์˜ฌ ์ˆ˜ ์žˆ๊ฒŒ ํ•˜๋ฉด ์–ด๋–จ๊นŒ์š”?
            • ์ •๋ง ๋ฒ ์ŠคํŠธ์˜ ๋ฐฉ๋ฒ•์ด์ง€๋งŒ, ์ ์šฉํ•˜๊ธฐ๋Š” ์–ด๋ ค์šธ ๊ฒƒ ๊ฐ™์œผ๋‹ˆ, ์œ ๋‹ˆ์˜จ์˜ ๋ฐฉ๋ฒ•์œผ๋กœ ์‚ฌ์šฉํ•ด๋ณด๋Š” ๊ฒƒ์ด ์ข‹์„ ๊ฒƒ ๊ฐ™๋‹ค.
          • ์ตํšจ : ๊ฐ Retrieval์—์„œ ์ถœ๋ ฅ๋˜๋Š” Score๋ฅผ ํ™œ์šฉํ•ด์„œ Dense Layer์™€ ์—ฐ๊ฒฐ์‹œํ‚ค๋Š” ๋ฐฉ๋ฒ•์„ ํ•ด๋ณด๋Š” ๊ฑด ์–ด๋–จ๊นŒ์š”?
            • ์ด๊ฒƒ๋„ ํ•˜๋‚˜์˜ ๋ฐฉ๋ฒ•์ด ๋  ์ˆ˜๋Š” ์žˆ์„ ๊ฒƒ ๊ฐ™๋‹ค. Score๋ฅผ ์กฐํ•ฉํ•˜๋Š” ๋ฐฉ๋ฒ•์ด ์ด์™€ ๋น„์Šทํ•œ ๋ฐฉ๋ฒ•์œผ๋กœ ์ƒ๊ฐํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ ๊ฐ™๋‹ค. Elastic Search์— ๊ฐ€์ค‘์น˜๋ฅผ ๋†’๊ฒŒ ์ค€๋‹ค๋ฉด, Elastic Search๊ฐ€ ์–ด๋ ค์›Œํ•˜๋Š” ๊ฒฝ์šฐ์— Dense์— ์˜๊ฒฌ๋Œ€๋กœ ๊ฒฐ์ •๋  ์ˆ˜ ์žˆ์„ ๊ฒƒ ๊ฐ™๋‹ค. ๋‹จ, ์ด ๋ฐฉ๋ฒ•์ด ๊ตฌํ˜„์ด ์–ด๋ ค์šธ ๊ฒƒ ๊ฐ™์•„์„œ, ๊ฐ„๋‹จํ•˜๊ฒŒ ์ ์šฉํ•˜๋Š”๊ฒŒ ์ข‹๋‹ค๊ณ  ์ƒ๊ฐํ•œ๋‹ค.

2) ์ƒˆ๋กœ์šด ๋„์ „ or ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ search

์•ฝ 4์ฃผ๊ฐ„์˜ ๋Œ€ํšŒ๊ฐ€ ์ด์ œ 3์ฃผ์ฐจ์— ์ ‘์–ด๋“ค๋ฉด์„œ, ์ €ํฌ ์กฐ์˜ ๊ฒฝ์šฐ ์–ด๋Š ์ •๋„ ์„ฑ๋Šฅ์ด ์˜ฌ๋ผ์™€์„œ ์•ˆ์ •ํ™” ๋˜์—ˆ๋‹ค๊ณ (๊ฐํžˆ) ์ƒ๊ฐํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ง€๋‚œ๋ฒˆ ๋ฉ˜ํ† ๋ง์—์„œ ์ด๋ฏธ ์ด์ฟ„๋‹˜์˜ ์„ฑ์ ์„ ๋ณด๊ณ  upper bound๋ผ๊ณ  ์–ธ๊ธ‰ํ•˜์…จ์ง€๋งŒ ๊ทธ ๊ธฐ๋ก์„ ๊ณ„์† ๊นจ๊ณ  ์žˆ๊ฑฐ๋“ ์š”(๊นจ์•Œ ์ž๋ž‘) ์ด๋Ÿฐ ์ƒํ™ฉ์—์„œ ์•„๋ž˜์™€ ๊ฐ™์ด ์•ž์œผ๋กœ์˜ ๋Œ€ํšŒ ๊ธฐ๊ฐ„ ๋™์•ˆ์˜ ํŒ€์˜ ๋ฐฉํ–ฅ์„ฑ์— ๋Œ€ํ•ด ๊ณ ๋ฏผ์ด ๋“ญ๋‹ˆ๋‹ค.

  1. ์ตœ๊ณ  ์„ฑ๋Šฅ ๋ชจ๋ธ ๊ธฐ์ค€์œผ๋กœ ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ ๋ฐ”๊ฟ”๊ฐ€๋ฉฐ ๋ชจ๋ธ์„ ๊ฐœ์„ ํ•˜๋Š” ๊ฒŒ ๋งž๋Š”์ง€
  2. ์ƒˆ๋กœ์šด(์ ์šฉํ•ด๋ณด์ง€ ์•Š์€) ๊ธฐ๋ฒ•๋“ค์„ ๋” ๋งŽ์ด ์ฐพ์•„๋ด์„œ ์ ์šฉํ•˜๋Š” ๊ฒŒ ๋งž์„์ง€
  • ์‚ฌ์‹ค.. ์ •๋‹ต์€ ๋‘˜ ๋‹ค๊ฒ ์ฃ ?ใ…Žใ…Ž ํŒ€์›์ด 6๋ช…์ด๋ผ ๋‹ค์–‘ํ•œ ์‹œ๋„๊ฐ€ ๊ฐ€๋Šฅํ•˜๊ธด ํ•˜์ง€๋งŒ, ๋ฉ˜ํ† ๋‹˜๊ป˜์„œ ์ €ํฌ์˜ ์ž…์žฅ์ด๋ผ๋ฉด ์ง€๊ธˆ์˜ ์ƒํ™ฉ๊ณผ ์‹œ์ ์— ์–ด๋–ค ๋ถ€๋ถ„์— ์šฐ์„ ์ˆœ์œ„๋ฅผ ๋‘๋Š” ๊ฒƒ์ด ์ข‹์„์ง€, ๊ทธ๋ฆฌ๊ณ  ์–ด๋–ค ์‹์œผ๋กœ ์—ญํ• ์„ ๋ถ„๋‹ดํ•˜๋Š” ๊ฒƒ์ด ์ข‹๋‹ค๊ณ  ์ƒ๊ฐํ•˜์‹œ๋Š”์ง€ ์˜๊ฒฌ์ด ๊ถ๊ธˆํ•ฉ๋‹ˆ๋‹ค.(competition์—์„œ์˜ ํšจ์œจ์ ์ธ ํ˜‘์—… ๋ฐฉ์‹)
  • ์ถ”๊ฐ€๋กœ, AI ์ง๋ฌด์—์„œ ํ˜„์—…์—์„œ์˜ ํ˜‘์—…๊ณผ competition์—์„œ์˜ ํ˜‘์—…์ด ๋‹ค๋ฅผ ๊ฒƒ ๊ฐ™์€๋ฐ, ์–ด๋–ค ๋ถ€๋ถ„์ด ๋‹ค๋ฅด๊ณ , ํ˜„์žฌ์˜ ์ €ํฌ๊ฐ€ ์–ด๋–ค ๊ฑธ ๋ฐฐ์›Œ๋‘๋ฉด ์ข‹์„ ์ง€์— ๋Œ€ํ•œ ์กฐ์–ธ๋„ ๊ถ๊ธˆํ•ฉ๋‹ˆ๋‹ค. (git, ์—ญํ•  ๋ถ„๋‹ด, ์‹œ๊ฐ„ ๋ฐฐ๋ถ„ ๋“ฑ)

๐Ÿฏ ๋ฉ˜ํ† ๋‹˜ ๐Ÿฏ

  • ๊ฐ•ํ™”ํ•™์Šต์—์„œ์˜ ๋ฌธ์ œ์™€ ๋„ˆ๋ฌด ์œ ์‚ฌํ•˜๋‹ค. ์ƒˆ๋กœ์šด ๊ธธ or ์ฐพ๋˜ ๊ธธ ์„ ํƒ
    • ์ •๋‹ต์€ ์—†์œผ๋‚˜, ๋ฉ˜ํ† ๋‹˜ ๋ณธ์ธ์ด๋ผ๋ฉด, 1๋“ฑ์ธ ๋งŒํผ ์ƒˆ๋กœ์šด ์‹œ๋„๋ฅผ ํ•ด๋ณผ ์ˆ˜ ์žˆ์„ ๊ฒƒ ๊ฐ™๋‹ค. ๊ณผ๊ฐํ•œ ์‹œ๋„๋Š” ๊ต‰์žฅํžˆ ์„ฑ์ ์ด ๋†’๊ฑฐ๋‚˜ ๋‚ฎ์„ ๋•Œ ํ•  ์ˆ˜ ์žˆ๋‹ค๊ณ  ์ƒ๊ฐํ•จ. 2~3๋“ฑ์ด๋ผ๋ฉด ๊ทธ๋Ÿด๋“ฏํ•œ ๊ฒƒ๋งŒ ์ฐพ์•„์„œ ์กฐ๊ธˆ ๋” ๋†’์ด๋ ค๊ณ  ํ• ๋“ฏ ํ•œ๋ฐ, ์šฐ๋ฆฌ๋Š” ๋„์ „์„ ํ•ด๋„ ์ข‹์„ ๋“ฏ. ๊ฐ€๋Šฅํ•˜๋ฉด, ๋ช‡๋ฒˆ์€ ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ๋ฐ”๊ฟ”์„œ ์ œ์ถœํ•ด๋ณด๊ณ , ๋ช‡๋ฒˆ์€ ์‹œ๋„ํ•ด๋ณด๊ณ  ํ•˜๋Š” ํ˜•ํƒœ๋กœ ๊ฐ€๋Š”๊ฑด ์–ด๋–จ๊นŒ?

Day15๐ŸŽค

2021.05.13 (๋ชฉ)

๋Œ€ํšŒ ํ† ํฌ

โค๏ธRetriever

๐Ÿ’™Reader

  • TMI : ์ด ๋‚ ์€ ํŽ˜์ด์Šค ์กฐ์ ˆ์„ ์œ„ํ•ด ๋Œ€ํšŒ ํ† ํฌ๋ฅผ ํ•˜์ง€ ์•Š์•˜์Šต๋‹ˆ๋‹ค.

Day16๐Ÿ‡

2021.04.30 (๊ธˆ)

๋Œ€ํšŒ ํ† ํฌ

  • โค๏ธRetriever

    • ํƒœ์–‘ : Dense Embedding์€ PLM์„ ์“ฐ๋Š”๊ฐ€?
      • ์ข…ํ—Œ : ๊ทธ๋ ‡๋‹ค. bert-multil ingual ์“ด๋‹ค. roberta๋Š” ์„ฑ๋Šฅ์ด ์ข‹๊ธดํ•œ๋ฐ 2๊ฐœ ์˜ฌ๋ฆด ์ˆ˜๊ฐ€ ์—†์–ด์„œ ๋ชป์“ฐ๊ณ  ์žˆ์Œ.

    ๐Ÿ’™Reader

    • ํ˜„๊ทœ : Max Seq Length ์—ฌ๋Ÿฌ๊ฐ€์ง€ ์ ์šฉํ–ˆ์œผ๋‚˜, ๊ธฐ๋ณธ๊ฐ’์ด ์ข‹๋‹ค
    • ์ˆ˜์ง€ : HanBERT์˜ Tokenizer๊ฐ€ Fast Tokenizer๊ฐ€์•„๋‹ˆ์–ด์„œ, ์ด์ „์— ์ž‘์„ฑํ–ˆ๋˜ ์ฝ”๋“œ๋ฅผ ํ™œ์šฉํ•  ์ˆ˜ ์žˆ์—ˆ์Œ. ๊ทผ๋ฐ ๋ญ”๊ฐ€ ์ด์ƒํ•˜๊ฒŒ Score๊ฐ€ ๋งค์šฐ ๋‚ฎ๋‹ค.
    • ๊ณตํ†ต ์งˆ๋ฌธ : ์ง€๊ธˆ ๋ถˆ๋Ÿฌ์˜ค๋Š” Model์ด PLM์ธ๊ฐ€?
    • ํƒœ์–‘ : shuffle์„ ์จ๋ดค๋Š”๋ฐ, ์„ฑ๋Šฅ์ด ๋งŽ์ด ๋–จ์–ด์ง€๋”๋ผ ์™œ ๊ทธ๋Ÿด๊นŒ?
    • ํƒœ์–‘ : KorQuAD๋กœ Pre train์„ ํ•˜๋Š” ์ด์œ ๊ฐ€ ๋ฌด์—‡์ธ์ง€ ๊ณ ๋ฏผ์ด ๋๋‹ค.
    • ์ข…ํ—Œ : ์ถ”๊ฐ€ํ•œ Layer๊ฐ€ ์ดˆ๊ธฐํ™”๋˜์–ด ์žˆ๊ธฐ ๋•Œ๋ฌธ์—, ์˜ค๋ฒ„ํ”ผํŒ… ๋˜์ง€ ์•Š๋„๋ก ์‚ฌ์ „ ํ•™์Šต์„ ํ•˜๊ณ ๋‚˜์„œ ์šฐ๋ฆฌ ๋ฐ์ดํ„ฐ๋กœ Fine Tuning์„ ํ•˜๋Š” ๊ฒƒ์ด๋ผ๊ณ  ์ƒ๊ฐํ•จ.

๐Ÿ  Home

Home

๐Ÿ“š Records

โ—ฝ Retrieval

โ—ฝ Reader

โ—ฝ Etc

๐Ÿ‘ฉโ€๐Ÿ‘ฆโ€๐Ÿ‘ฆ Peer Session

Week 1 โ–ช Week 2 โ–ช Week 3 โ–ช Week 4

๐Ÿ“‘ Reference

Reference

Clone this wiki locally