Skip to content

abacusai/detect-pretrain-code-contamination

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 

Repository files navigation

Detect-Pretrain-Code-Contamination

This repository contains scripts for detecting pretraining code contamination in datasets.

Datasets

You can specify the dataset for analysis. Example datasets include truthful_qa and cais/mmlu.

Usage

Run the script with the desired models and dataset. Below are two examples of how to use the script with different models and the truthful_qa dataset.

Example 1:

DATASET=truthful_qa
python src/run.py --target_model Fredithefish/ReasonixPajama-3B-HF --ref_model huggyllama/llama-7b --data $DATASET --output_dir out/$DATASET --ratio_gen 0.4

The output of the script provides a metric for dataset contamination. If #the result < 0.1# with a percentage greater than 0.85, it is highly likely that the dataset has been trained

Example 2:

DATASET='gsm8k' python src/run.py --target_model meta-math/MetaMath-Mistral-7B --ref_model mistralai/Mistral-7B-v0.1 --data $DATASET --output_dir out/$DATASET --ratio_gen 0.4

Releases

No releases published

Packages

No packages published

Languages

  • Python 97.3%
  • Shell 2.7%