Skip to content

anandsaini024/iclabel-python

 
 

Repository files navigation

mne-icalabel

Code style: black Codecov unit-tests CircleCI PyPI Download count Latest PyPI release Latest conda-forge release Checked with mypy status

This repository is a conversion of the popular Matlab-based ICLabel classifier for Python. In addition, mne-icalabel provides extensions and improvements in the form of other models.

Why?

EEG and MEG recordings include artifacts, such as heartbeat, eyeblink, muscle, and movement activity. Independent component analysis (ICA) is a common method to remove artifacts, but typically relies on manual annotations labelling which independent components (IC) reflect noise and which reflect brain activity.

This package aims at automating this process, using the popular MNE-Python API for EEG, MEG and iEEG data.

Basic Usage

MNE-ICALabel estimates the labels of ICA components given a MNE-Python Raw or Epochs object and an ICA instance using the ICA decomposition available in MNE-Python.

from mne_icalabel import label_components

# assuming you have a Raw and ICA instance previously fitted
label_components(raw, ica, method='iclabel')

The only current available method is 'iclabel'.

Documentation

Stable version documentation. Dev version documentation.

Installation

The current stable release of mne-icalabel can be installed with pip, for example, by running:

pip install mne-icalabel

For further details about installation, see the install page.

To get the latest (development) version, using git, open a terminal and type:

git clone git://github.com/mne-tools/mne-icalabel.git
cd mne-icalabel
pip install -e .

The development version can also be installed directly using pip:

pip install https://api.github.com/repos/mne-tools/mne-icalabel/zipball/main

Alternatively, you can also download a zip file of the latest development version.

Contributing

If you are interested in contributing, please read the contributing guidelines.

Getting Help

MNE Forum

For any usage questions, please post to the MNE Forum. Be sure to add the mne-icalabel tag to your question.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 90.3%
  • TeX 6.8%
  • Makefile 2.0%
  • Shell 0.9%