-
Notifications
You must be signed in to change notification settings - Fork 11
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
resolve requiremnents; finalize jenny data
- Loading branch information
Showing
105 changed files
with
15,207 additions
and
6 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,108 @@ | ||
import random | ||
import matplotlib.pyplot as plt | ||
|
||
|
||
def f_327(points: int): | ||
""" | ||
Generate a plot of random numbers such that indices are on the x-axis and generated numbers are on the y-axis. | ||
Parameters: | ||
- points (int): Number of random points to generate. | ||
Returns: | ||
- Returns a tuple containing: | ||
- A list of generated random numbers. | ||
- A matplotlib Axes object representing the plot. | ||
Requirements: | ||
- random | ||
- matplotlib.pyplot | ||
Example: | ||
>>> import random | ||
>>> random.seed(0) | ||
>>> f_327(5) | ||
([0.8444218515250481, 0.7579544029403025, 0.420571580830845, 0.25891675029296335, 0.5112747213686085], <Axes: >) | ||
>>> f_327(3) | ||
([0.4049341374504143, 0.7837985890347726, 0.30331272607892745], <Axes: >) | ||
""" | ||
x = list(range(points)) | ||
y = [random.random() for _ in range(points)] | ||
|
||
_, ax = plt.subplots() | ||
ax.plot(x, y) | ||
|
||
return y, ax | ||
|
||
|
||
import unittest | ||
import random | ||
|
||
|
||
class TestCases(unittest.TestCase): | ||
def test_case_1(self): | ||
random.seed(0) | ||
y, _ = f_327(5) | ||
# Test correct number of points are generated | ||
self.assertEqual(len(y), 5) | ||
|
||
def test_case_2(self): | ||
random.seed(0) | ||
y, _ = f_327(5) | ||
# Test expected values | ||
self.assertTrue(all(0 <= num <= 1 for num in y)) | ||
self.assertAlmostEqual( | ||
y, | ||
[ | ||
0.8444218515250481, | ||
0.7579544029403025, | ||
0.420571580830845, | ||
0.25891675029296335, | ||
0.5112747213686085, | ||
], | ||
) | ||
|
||
def test_case_3(self): | ||
random.seed(0) | ||
# Test incorrect data types | ||
with self.assertRaises(TypeError): | ||
f_327("5") | ||
with self.assertRaises(TypeError): | ||
f_327([]) | ||
with self.assertRaises(TypeError): | ||
f_327(None) | ||
|
||
def test_case_4(self): | ||
random.seed(0) | ||
# Test handling 1 number | ||
y, ax = f_327(1) | ||
# Assert that 1 random number is generated | ||
self.assertEqual(len(y), 1) | ||
# Assert that the plot has the correct x and y data | ||
self.assertEqual(list(ax.lines[0].get_xdata()), [0]) | ||
self.assertEqual(list(ax.lines[0].get_ydata()), y) | ||
|
||
def test_case_5(self): | ||
random.seed(0) | ||
# Test handling no random numbers | ||
y, ax = f_327(0) | ||
self.assertEqual(len(y), 0) | ||
# Assert that the plot has no data | ||
self.assertEqual(list(ax.lines[0].get_xdata()), []) | ||
self.assertEqual(list(ax.lines[0].get_ydata()), []) | ||
|
||
def tearDown(self): | ||
plt.close("all") | ||
|
||
|
||
def run_tests(): | ||
suite = unittest.TestSuite() | ||
suite.addTest(unittest.makeSuite(TestCases)) | ||
runner = unittest.TextTestRunner() | ||
runner.run(suite) | ||
|
||
|
||
if __name__ == "__main__": | ||
import doctest | ||
doctest.testmod() | ||
run_tests() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,145 @@ | ||
import sqlite3 | ||
import pandas as pd | ||
|
||
|
||
def f_328(db_file: str, query: str) -> pd.DataFrame: | ||
"""Query an SQLite database and return the results. | ||
This function connects to a given SQLite database, executes a given SQL query, | ||
and returns the results as a pandas DataFrame. | ||
Parameters: | ||
- db_file (str): Path to the SQLite database file. | ||
- query (str): SQL query to execute. | ||
Returns: | ||
- pd.DataFrame: A DataFrame containing the results of the executed query. | ||
Requirements: | ||
- sqlite3 | ||
- pandas | ||
Example: | ||
>>> db_file = 'sample_database.db' | ||
>>> df = f_328(db_file, "SELECT * FROM users WHERE name = 'John Doe'") | ||
pd.DataFrame: | ||
id name age | ||
-- ---------- --- | ||
.. John Doe .. | ||
>>> df = f_328(db_file, "SELECT age, COUNT(*) AS count FROM users GROUP BY age") | ||
pd.DataFrame: | ||
age count | ||
--- ----- | ||
25 3 | ||
""" | ||
with sqlite3.connect(db_file) as conn: | ||
return pd.read_sql_query(query, conn) | ||
|
||
|
||
import unittest | ||
import sqlite3 | ||
from faker import Faker | ||
import os | ||
|
||
|
||
class TestCases(unittest.TestCase): | ||
fake = Faker() | ||
specific_names = [ | ||
"John Doe", | ||
"Jane Smith", | ||
"Alice Brown", | ||
"Bob White", | ||
"Charlie Green", | ||
] | ||
specific_ages = [25, 30, 35, 40, 45] | ||
|
||
@classmethod | ||
def setUpClass(cls): | ||
"""Set up test data before running tests.""" | ||
cls.db_file = cls.generate_test_data_with_file() | ||
|
||
@staticmethod | ||
def generate_test_data_with_file() -> str: | ||
"""Generate test data and save it to a temporary SQLite database file.""" | ||
db_file = "./temp_test_db.sqlite3" | ||
if os.path.exists(db_file): | ||
os.remove(db_file) | ||
conn = sqlite3.connect(db_file) | ||
create_table_query = """ | ||
CREATE TABLE users ( | ||
id INTEGER PRIMARY KEY, | ||
name TEXT NOT NULL, | ||
age INTEGER NOT NULL | ||
) | ||
""" | ||
conn.execute(create_table_query) | ||
for _ in range(100): | ||
name = TestCases.fake.name() | ||
age = TestCases.fake.random_int(min=20, max=70) | ||
conn.execute("INSERT INTO users (name, age) VALUES (?, ?)", (name, age)) | ||
for name, age in zip(TestCases.specific_names, TestCases.specific_ages): | ||
conn.execute("INSERT INTO users (name, age) VALUES (?, ?)", (name, age)) | ||
conn.commit() | ||
conn.close() | ||
return db_file | ||
|
||
def test_case_1(self): | ||
"""Test fetching all users.""" | ||
df = f_328(self.db_file, "SELECT * FROM users") | ||
self.assertEqual(len(df), 100 + len(self.specific_names)) | ||
for name in self.specific_names: | ||
self.assertIn(name, df["name"].values) | ||
|
||
def test_case_2(self): | ||
"""Test fetching specific users based on names.""" | ||
names_as_strings = "', '".join(self.specific_names) | ||
df = f_328( | ||
self.db_file, | ||
f"SELECT name, age FROM users WHERE name IN ('{names_as_strings}')", | ||
) | ||
for name in self.specific_names: | ||
self.assertIn(name, df["name"].values) | ||
for age in self.specific_ages: | ||
self.assertIn(age, df["age"].values) | ||
|
||
def test_case_3(self): | ||
"""Test fetching users based on age condition.""" | ||
age_limit = self.fake.random_int(min=20, max=60) | ||
df = f_328(self.db_file, f"SELECT * FROM users WHERE age > {age_limit}") | ||
self.assertTrue(all(df["age"] > age_limit)) | ||
|
||
def test_case_4(self): | ||
"""Test fetching users and sorting by name.""" | ||
df = f_328(self.db_file, "SELECT * FROM users ORDER BY name") | ||
sorted_names = sorted(df["name"].tolist()) | ||
self.assertListEqual(df["name"].tolist(), sorted_names) | ||
|
||
def test_case_5(self): | ||
"""Test fetching users based on age and sorting by age.""" | ||
age_limit = self.fake.random_int(min=20, max=30) | ||
df = f_328( | ||
self.db_file, | ||
f"SELECT * FROM users WHERE age < {age_limit} ORDER BY age DESC", | ||
) | ||
self.assertTrue(all(df["age"] < age_limit)) | ||
self.assertTrue( | ||
all(df["age"].iloc[i] >= df["age"].iloc[i + 1] for i in range(len(df) - 1)) | ||
) | ||
|
||
@classmethod | ||
def tearDownClass(cls): | ||
"""Clean up test data after running tests.""" | ||
os.remove(cls.db_file) | ||
|
||
|
||
def run_tests(): | ||
suite = unittest.TestSuite() | ||
suite.addTest(unittest.makeSuite(TestCases)) | ||
runner = unittest.TextTestRunner() | ||
runner.run(suite) | ||
|
||
|
||
if __name__ == "__main__": | ||
# import doctest | ||
# doctest.testmod() | ||
run_tests() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,139 @@ | ||
import pandas as pd | ||
import json | ||
|
||
|
||
def f_329(data: dict, output_path: str = "./default_data_output.json") -> str: | ||
"""Converts the given DataFrame to a dictionary, dropping the column named 'c' | ||
if it exists, and then saves it as a JSON file. | ||
Parameters: | ||
- data (dict): The input data dictionary. | ||
- output_path (str, optional): The path where the JSON file should be saved. Default is './default_data_output.json'. | ||
Returns: | ||
- str: Path where the JSON file was saved. | ||
Requirements: | ||
- pandas | ||
- json | ||
Example: | ||
>>> f_329({'a': [1,2], 'b': [3,4], 'c': [5,6]}) | ||
'./default_data_output.json' | ||
>>> f_329({'a': [1,2], 'b': [3,4], 'c': [5,6]}, 'custom/path/results.json') | ||
'custom/path/results.json' | ||
""" | ||
df = pd.DataFrame(data) | ||
# Drop column named 'c' if it exists | ||
df = df.drop(columns="c", errors="ignore") | ||
# Convert the DataFrame to dictionary | ||
data_dict = df.to_dict(orient="dict") | ||
# Save the dictionary as a JSON file | ||
with open(output_path, "w") as file: | ||
json.dump(data_dict, file) | ||
|
||
return output_path | ||
|
||
|
||
import unittest | ||
import pandas as pd | ||
import json | ||
import os | ||
|
||
|
||
def run_tests(): | ||
suite = unittest.TestSuite() | ||
suite.addTest(unittest.makeSuite(TestCases)) | ||
runner = unittest.TextTestRunner() | ||
runner.run(suite) | ||
|
||
|
||
class TestCases(unittest.TestCase): | ||
def read_json_file(self, path): | ||
# Helper function to read content from a JSON file | ||
with open(path, "r") as f: | ||
return json.load(f) | ||
|
||
def tearDown(self): | ||
# Cleanup procedure after each test to remove generated files | ||
files_to_remove = [ | ||
"./default_data_output.json", | ||
"./custom_data_output_2.json", | ||
"./custom_data_output_3.json", | ||
"./custom_data_output_4.json", | ||
"./custom_data_output_5.json", | ||
] | ||
for file in files_to_remove: | ||
if os.path.exists(file): | ||
os.remove(file) | ||
|
||
def convert_keys_to_str(self, dictionary): | ||
# Convert dictionary keys to strings recursively | ||
if not isinstance(dictionary, dict): | ||
return dictionary | ||
return {str(k): self.convert_keys_to_str(v) for k, v in dictionary.items()} | ||
|
||
def test_case_1(self): | ||
# Test basic DataFrame with column "c" | ||
data = {"a": [1, 2], "b": [3, 4], "c": [5, 6]} | ||
df = pd.DataFrame(data) | ||
output_path = f_329(data) | ||
self.assertTrue(os.path.exists(output_path)) | ||
expected_data = self.convert_keys_to_str( | ||
df.drop(columns="c").to_dict(orient="dict") | ||
) | ||
self.assertEqual(self.read_json_file(output_path), expected_data) | ||
|
||
def test_case_2(self): | ||
# Test DataFrame with non-numeric data and column "c" | ||
data = {"name": ["Alice", "Bob"], "country": ["USA", "Canada"], "c": ["x", "y"]} | ||
df = pd.DataFrame(data) | ||
custom_path = "./custom_data_output_2.json" | ||
output_path = f_329(data, custom_path) | ||
self.assertTrue(os.path.exists(output_path)) | ||
expected_data = self.convert_keys_to_str( | ||
df.drop(columns="c").to_dict(orient="dict") | ||
) | ||
self.assertEqual(self.read_json_file(output_path), expected_data) | ||
|
||
def test_case_3(self): | ||
# Test DataFrame with multiple columns and no column "c" | ||
data = {"age": [25, 30], "height": [170, 175]} | ||
df = pd.DataFrame(data) | ||
custom_path = "./custom_data_output_3.json" | ||
output_path = f_329(data, custom_path) | ||
self.assertTrue(os.path.exists(output_path)) | ||
expected_data = self.convert_keys_to_str(df.to_dict(orient="dict")) | ||
self.assertEqual(self.read_json_file(output_path), expected_data) | ||
|
||
def test_case_4(self): | ||
# Test DataFrame with mixed data types including column "c" | ||
data = { | ||
"id": [1, 2], | ||
"is_student": [True, False], | ||
"grades": ["A", "B"], | ||
"c": [0.5, 0.8], | ||
} | ||
df = pd.DataFrame(data) | ||
output_path = f_329(data) | ||
self.assertTrue(os.path.exists(output_path)) | ||
expected_data = self.convert_keys_to_str( | ||
df.drop(columns="c").to_dict(orient="dict") | ||
) | ||
self.assertEqual(self.read_json_file(output_path), expected_data) | ||
|
||
def test_case_5(self): | ||
# Test an empty DataFrame | ||
data = {} | ||
df = pd.DataFrame(data) | ||
custom_path = "./custom_data_output_5.json" | ||
output_path = f_329(data, custom_path) | ||
self.assertTrue(os.path.exists(output_path)) | ||
expected_data = self.convert_keys_to_str(df.to_dict(orient="dict")) | ||
self.assertEqual(self.read_json_file(output_path), expected_data) | ||
|
||
|
||
if __name__ == "__main__": | ||
# import doctest | ||
# doctest.testmod() | ||
run_tests() |
Oops, something went wrong.