Skip to content

butchland/ntlights-processing-utils

Repository files navigation

Nightlights for Damage Assessment Nightlights Processing Utilities

Install

pip install git+https://github.com/butchland/ntlights-processing-utils.git

How to use

  • Download the nightlights satellite imagery for the period before and after the disaster
  • Download the geospatial admin boundaries for the areas concerned
  • Download and scrape the damage assessment situationers as ground truth
  • Preprocess the situationrers to extract the locations and damage assessment
  • Wrangle and link the damage assessment locations to the admin boundaries
  • Extract the radiance data from the nightlights satellite
  • Analyze the patterns for radiance data for highly damaged areas vs undamaged or low damage areas
  • Write up conclusions

Query what images are relevant for what dates and what areas

  • Fetch monthly catalogs of VIIRS NDB night lights imagery (2012-2020)
  • Create a searchable database of images for each day of all the night lights images
  • Create an API to search and filter images by date and area boundary (as well as cache! the metadata)
  • Create an API to evaluate overlap of images to area boundary
  • Create an API to download selected images

Lets start with an GeoDataFrame that is the bounding box of the AOI (Philippines)

aoi = gpd.read_file('../data/admin_areas/ph_admin_bbox_wgs84.geojson')

Lets search for images overlapping the AOI for a particular date, in this case 20180501 or May 1, 2018

matched = search_dates_aoi(aoi, date_param='20180501')
CPU times: user 79.7 ms, sys: 60.1 ms, total: 140 ms
Wall time: 137 ms

Notice how fast the retrieval is – that’s because the particular date has already been cached.

For dates that haven’t been cached, the time can take between 10-15 minutes, depending on the internet speed.

len(matched)
5

There are 5 images for the date that overlaps the AOI, but which ones are the most relevant?

matched
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
href item_href stem suffix base_url folder product_id start_date first_scantime end_scantime orbital_nbr create_datetime data_origin data_domain vflag_file vflag_href cache_stem asset_href geometry
80 ./SVDNB_npp_d20180501_t1634142_e1639546_b33728_c20180501223954897862_noac_ops.rade9.co.json https://globalnightlight.s3.amazonaws.com/npp_201805/SVDNB_npp_d20180501_t1634142_e1639546_b33728_c20180501223954897... SVDNB_npp_d20180501_t1634142_e1639546_b33728_c20180501223954897862_noac_ops rade9.co.json https://globalnightlight.s3.amazonaws.com npp_201805 SVDNB_npp 20180501 1634142 1639546 33728 20180501223954897862 noac ops npp_d20180501_t1634142_e1639546_b33728.vflag.co.tif https://globalnightlight.s3.amazonaws.com/npp_201805/npp_d20180501_t1634142_e1639546_b33728.vflag.co.tif SVDNB_npp_d20180501_t1634142_e1639546_b33728_c20180501223954897862_noac_ops https://globalnightlight.s3.amazonaws.com/npp_201805/SVDNB_npp_d20180501_t1634142_e1639546_b33728_c20180501223954897... POLYGON ((118.99800 19.00210, 118.99800 44.00210, 157.99800 44.00210, 157.99800 19.00210, 118.99800 19.00210))
81 ./SVDNB_npp_d20180501_t1639558_e1645362_b33728_c20180501224536066966_noac_ops.rade9.co.json https://globalnightlight.s3.amazonaws.com/npp_201805/SVDNB_npp_d20180501_t1639558_e1645362_b33728_c20180501224536066... SVDNB_npp_d20180501_t1639558_e1645362_b33728_c20180501224536066966_noac_ops rade9.co.json https://globalnightlight.s3.amazonaws.com npp_201805 SVDNB_npp 20180501 1639558 1645362 33728 20180501224536066966 noac ops npp_d20180501_t1639558_e1645362_b33728.vflag.co.tif https://globalnightlight.s3.amazonaws.com/npp_201805/npp_d20180501_t1639558_e1645362_b33728.vflag.co.tif SVDNB_npp_d20180501_t1639558_e1645362_b33728_c20180501224536066966_noac_ops https://globalnightlight.s3.amazonaws.com/npp_201805/SVDNB_npp_d20180501_t1639558_e1645362_b33728_c20180501224536066... POLYGON ((115.99800 0.00206, 115.99800 25.00210, 149.99800 25.00210, 149.99800 0.00206, 115.99800 0.00206))
82 ./SVDNB_npp_d20180501_t1645375_e1651161_b33728_c20180501225118045996_noac_ops.rade9.co.json https://globalnightlight.s3.amazonaws.com/npp_201805/SVDNB_npp_d20180501_t1645375_e1651161_b33728_c20180501225118045... SVDNB_npp_d20180501_t1645375_e1651161_b33728_c20180501225118045996_noac_ops rade9.co.json https://globalnightlight.s3.amazonaws.com npp_201805 SVDNB_npp 20180501 1645375 1651161 33728 20180501225118045996 noac ops npp_d20180501_t1645375_e1651161_b33728.vflag.co.tif https://globalnightlight.s3.amazonaws.com/npp_201805/npp_d20180501_t1645375_e1651161_b33728.vflag.co.tif SVDNB_npp_d20180501_t1645375_e1651161_b33728_c20180501225118045996_noac_ops https://globalnightlight.s3.amazonaws.com/npp_201805/SVDNB_npp_d20180501_t1645375_e1651161_b33728_c20180501225118045... POLYGON ((110.99800 -19.99790, 110.99800 5.00208, 143.99800 5.00208, 143.99800 -19.99790, 110.99800 -19.99790))
89 ./SVDNB_npp_d20180501_t1816398_e1822184_b33729_c20180502002220226537_noac_ops.rade9.co.json https://globalnightlight.s3.amazonaws.com/npp_201805/SVDNB_npp_d20180501_t1816398_e1822184_b33729_c20180502002220226... SVDNB_npp_d20180501_t1816398_e1822184_b33729_c20180502002220226537_noac_ops rade9.co.json https://globalnightlight.s3.amazonaws.com npp_201805 SVDNB_npp 20180501 1816398 1822184 33729 20180502002220226537 noac ops npp_d20180501_t1816398_e1822184_b33729.vflag.co.tif https://globalnightlight.s3.amazonaws.com/npp_201805/npp_d20180501_t1816398_e1822184_b33729.vflag.co.tif SVDNB_npp_d20180501_t1816398_e1822184_b33729_c20180502002220226537_noac_ops https://globalnightlight.s3.amazonaws.com/npp_201805/SVDNB_npp_d20180501_t1816398_e1822184_b33729_c20180502002220226... POLYGON ((93.99790 16.00210, 93.99790 41.00210, 130.99800 41.00210, 130.99800 16.00210, 93.99790 16.00210))
90 ./SVDNB_npp_d20180501_t1822196_e1828000_b33729_c20180502002801307723_noac_ops.rade9.co.json https://globalnightlight.s3.amazonaws.com/npp_201805/SVDNB_npp_d20180501_t1822196_e1828000_b33729_c20180502002801307... SVDNB_npp_d20180501_t1822196_e1828000_b33729_c20180502002801307723_noac_ops rade9.co.json https://globalnightlight.s3.amazonaws.com npp_201805 SVDNB_npp 20180501 1822196 1828000 33729 20180502002801307723 noac ops npp_d20180501_t1822196_e1828000_b33729.vflag.co.tif https://globalnightlight.s3.amazonaws.com/npp_201805/npp_d20180501_t1822196_e1828000_b33729.vflag.co.tif SVDNB_npp_d20180501_t1822196_e1828000_b33729_c20180502002801307723_noac_ops https://globalnightlight.s3.amazonaws.com/npp_201805/SVDNB_npp_d20180501_t1822196_e1828000_b33729_c20180502002801307... POLYGON ((89.99790 -2.99794, 89.99790 22.00210, 122.99800 22.00210, 122.99800 -2.99794, 89.99790 -2.99794))

One way to answer the question is by taking the amount of overlap each image makes over the AOI and sorts them from the highest to the lowest.

sorted_results = compute_overlaps(aoi,matched)
CPU times: user 73.3 ms, sys: 0 ns, total: 73.3 ms
Wall time: 69.9 ms
sorted_results[['pct_covered']].head()
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
pct_covered
81 0.860461
90 0.707395
89 0.317353
80 0.081804
82 0.024449

Based on the pct_covered it looks like the first 2 are good candidates to hold relevant data over the AOI

aoi_ph = gpd.read_file('../data/admin_areas/phl_admbnda_adm3_psa_namria_20200529.shp')
aoi_ph_planar = aoi_ph.to_crs('EPSG:3857')
ax = plt.axes()
ax = sorted_results[:2].plot(ax=ax, facecolor='none', edgecolor='blue')
ax = aoi_ph_planar.plot(ax=ax,color='red')

So the results do look good for the top 2 areas as between them, they cover the entire AOI.

Now, lets download the relevant images

top2_items = sorted_results[:2].copy()
top2_items = download_items(top2_items, dest='../data/ntlights-bigfiles')
CPU times: user 7.02 ms, sys: 1.55 ms, total: 8.57 ms
Wall time: 6.76 ms

Notice how fast the times are

this is because the files were already downloaded into the directory – the time taken to download new files can take about 10-15 minutes depending on your internet connection

top2_items[['image_path']]
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
image_path
81 /home/butch2/play/devpost/ntlights-damage-assessment/nbs/../data/ntlights-bigfiles/npp_201805/SVDNB_npp_d20180501_t1...
90 /home/butch2/play/devpost/ntlights-damage-assessment/nbs/../data/ntlights-bigfiles/npp_201805/SVDNB_npp_d20180501_t1...

These now display the path to image files – which you can then open for analysis using rasterio or any other python package.

About

A project to use night lights for damage assessment

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Sponsor this project

 

Packages

No packages published