Skip to content

Commit

Permalink
client: Add a client Notebook
Browse files Browse the repository at this point in the history
Add a Notebook that demonstrates how to invoke the KServe Inference
Service.

NOTE: Do not forget to create an Authorization Policy for the Inference
Service. See here: kubeflow/manifests#2811

Signed-off-by: Dimitris Poulopoulos <[email protected]>
  • Loading branch information
dpoulopoulos committed Jul 25, 2024
1 parent 28f413c commit cbf7629
Show file tree
Hide file tree
Showing 2 changed files with 138 additions and 1 deletion.
132 changes: 132 additions & 0 deletions 03.client.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,132 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "67f190cf-9caf-4da7-adc7-048065698f6d",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import h5py\n",
"import requests\n",
"import pandas as pd\n",
"\n",
"from PIL import Image\n",
"from io import BytesIO\n",
"from torchvision import transforms"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b1447be3-51e3-4900-ad6e-5c48ce79bae2",
"metadata": {},
"outputs": [],
"source": [
"data_path = \"data\"\n",
"\n",
"path_test_df = os.path.join(data_path, \"test-metadata.csv\")\n",
"path_test_hdf5 = os.path.join(data_path, \"test-image.hdf5\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "01d6b115-c9ad-4ad4-a966-a58f09d5b9de",
"metadata": {},
"outputs": [],
"source": [
"test_df = pd.read_csv(path_test_df)\n",
"isic_id = test_df.isic_id.values.tolist()\n",
"\n",
"hdf5_img = h5py.File(path_test_hdf5, 'r')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "681ae630-d372-440d-a29e-5a68c209943d",
"metadata": {},
"outputs": [],
"source": [
"example_image = Image.open(BytesIO(hdf5_img[isic_id[0]][()]))\n",
"example_image.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "53e38ac0-bd5f-4c46-a098-f7735c275d8e",
"metadata": {},
"outputs": [],
"source": [
"def prepare_request_body(img: Image) -> dict:\n",
" transformations = transforms.Compose([\n",
" transforms.Resize((224, 224)),\n",
" transforms.ToTensor(),\n",
" transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])\n",
" ])\n",
" \n",
" image = transformations(img)[None, :]\n",
" \n",
" body = {\n",
" \"inputs\": [\n",
" {\n",
" \"name\": \"input.1\",\n",
" \"shape\": [1, 3, 224, 224],\n",
" \"datatype\": \"FP32\",\n",
" \"data\": image.tolist()\n",
" }\n",
" ]\n",
" }\n",
" \n",
" return body"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "eb1562d1-a944-4b18-b392-5217662e44c1",
"metadata": {},
"outputs": [],
"source": [
"URL = \"http://skin-cancer-detection.kubeflow-user-example-com.svc.cluster.local/v2/models/skin_cancer_detection/infer\"\n",
"response = requests.post(URL, json=prepare_request_body(example_image))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0f2ad89c-74ad-478c-9fc0-612c6ae129e6",
"metadata": {},
"outputs": [],
"source": [
"if response.status_code == 200:\n",
" prob = response.json()[\"outputs\"][0][\"data\"][0]\n",
" print(f\"The probability that the lesion is malignant is {prob:.3f}\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.10"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
7 changes: 6 additions & 1 deletion requirements.txt
Original file line number Diff line number Diff line change
@@ -1 +1,6 @@
kfp[kubernetes]==2.8.0
kfp[kubernetes]==2.8.0
torch==2.3.1
torchvision==0.18.1
pandas==2.0.3
pillow==10.4.0
h5py==3.11.0

0 comments on commit cbf7629

Please sign in to comment.