Skip to content

Commit

Permalink
docs: add example for logistic regression (#1240)
Browse files Browse the repository at this point in the history
* add logistic regression example

* makr test_llm_gemini_score as flask

---------

Co-authored-by: Shuowei Li <[email protected]>
  • Loading branch information
shuoweil and Shuowei Li authored Dec 26, 2024
1 parent ed47ef1 commit 4d854fd
Show file tree
Hide file tree
Showing 2 changed files with 32 additions and 0 deletions.
1 change: 1 addition & 0 deletions tests/system/small/ml/test_llm.py
Original file line number Diff line number Diff line change
Expand Up @@ -417,6 +417,7 @@ def test_llm_palm_score_params(llm_fine_tune_df_default_index):
)


@pytest.mark.flaky(retries=2)
@pytest.mark.parametrize(
"model_name",
(
Expand Down
31 changes: 31 additions & 0 deletions third_party/bigframes_vendored/sklearn/linear_model/_logistic.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,37 @@
class LogisticRegression(LinearClassifierMixin, BaseEstimator):
"""Logistic Regression (aka logit, MaxEnt) classifier.
>>> from bigframes.ml.linear_model import LogisticRegression
>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
>>> X = bpd.DataFrame({ \
"feature0": [20, 21, 19, 18], \
"feature1": [0, 1, 1, 0], \
"feature2": [0.2, 0.3, 0.4, 0.5]})
>>> y = bpd.DataFrame({"outcome": [0, 0, 1, 1]})
>>> # Create the LogisticRegression
>>> model = LogisticRegression()
>>> model.fit(X, y)
LogisticRegression()
>>> model.predict(X) # doctest:+SKIP
predicted_outcome predicted_outcome_probs feature0 feature1 feature2
0 0 [{'label': 1, 'prob': 3.1895929877221615e-07} ... 20 0 0.2
1 0 [{'label': 1, 'prob': 5.662891265051953e-06} ... 21 1 0.3
2 1 [{'label': 1, 'prob': 0.9999917826885262} {'l... 19 1 0.4
3 1 [{'label': 1, 'prob': 0.9999999993659574} {'l... 18 0 0.5
4 rows × 5 columns
[4 rows x 5 columns in total]
>>> # Score the model
>>> score = model.score(X, y)
>>> score # doctest:+SKIP
precision recall accuracy f1_score log_loss roc_auc
0 1.0 1.0 1.0 1.0 0.000004 1.0
1 rows × 6 columns
[1 rows x 6 columns in total]
Args:
optimize_strategy (str, default "auto_strategy"):
The strategy to train logistic regression models. Possible values are
Expand Down

0 comments on commit 4d854fd

Please sign in to comment.