Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

pg-vector support based on Asyncpg #41

Open
wants to merge 10 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
100 changes: 100 additions & 0 deletions nano_graphrag/storage/asyncpg.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,100 @@
from nano_graphrag._storage import BaseVectorStorage
import asyncpg
import asyncio
from contextlib import asynccontextmanager
from nano_graphrag._utils import logger
from pgvector.asyncpg import register_vector
from nano_graphrag.graphrag import always_get_an_event_loop
import numpy as np
import json

import nest_asyncio
nest_asyncio.apply()
Copy link
Owner

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Why use nest_asyncio here? We have nest_asyncio at beginning then remove it. It seems like will cause some deadlock cases

Copy link
Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The reason is that we seem to lack an asynchronous initialization function. The entire function runs in an asynchronous environment, and in order to run in a nested asynchronous environment, I used nest_asyncio.

Copy link
Owner

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Yeah... it could be problematic I think. Do we have to use nest-async to run pg-vector storage?

Copy link
Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I need to ensure that the plugin is created correctly, along with the corresponding table. Since the asyncpg library only supports asynchronous operations, I need to obtain a loop for initialization.


class AsyncpgVectorStorage(BaseVectorStorage):
gusye1234 marked this conversation as resolved.
Show resolved Hide resolved
table_name_generator: callable = None
conn_fetcher: callable = None
cosine_better_than_threshold: float = 0.2
dsn = None
def __init__(self, dsn: str = None, conn_fetcher: callable = None, table_name_generator: callable = None, *args, **kwargs):
super().__init__(*args, **kwargs)
self.dsn = dsn
self.conn_fetcher = conn_fetcher
assert self.dsn != None or self.conn_fetcher != None, "Must provide either dsn or conn_fetcher"
if self.dsn:
self.conn_fetcher = self.__get_conn
if not table_name_generator:
self.table_name_generator = lambda working_dir, namespace: f'{working_dir}_{namespace}_vdb'
self._table_name = self.table_name_generator(self.global_config["working_dir"], self.namespace)
self._max_batch_size = self.global_config["embedding_batch_num"]

self.cosine_better_than_threshold = self.global_config.get(
"query_better_than_threshold", self.cosine_better_than_threshold
)
loop = always_get_an_event_loop()
loop.run_until_complete(self._secure_table())
@asynccontextmanager
async def __get_conn(self):
try:
conn: asyncpg.Connection = await asyncpg.connect(self.dsn)
await register_vector(conn)
yield conn
finally:
await conn.close()
async def _secure_table(self):
async with self.conn_fetcher() as conn:
conn: asyncpg.Connection
await conn.execute('CREATE EXTENSION IF NOT EXISTS vector')
result = await conn.fetch(
"SELECT EXISTS (SELECT 1 FROM information_schema.tables WHERE table_name = $1)", self._table_name)
table_exists = result[0]['exists']
if not table_exists:
# create the table
await conn.execute(f'CREATE TABLE {self._table_name} (id text PRIMARY KEY, embedding vector({self.embedding_func.embedding_dim}), data jsonb)')
await conn.execute(f'CREATE INDEX ON {self._table_name} USING hnsw (embedding vector_cosine_ops)')
async def query(self, query: str, top_k: int) -> list[dict]:
embedding = await self.embedding_func([query])
embedding = embedding[0]
async with self.conn_fetcher() as conn:

result = await conn.fetch(f'SELECT embedding <=> $1 as similarity, id, embedding, data FROM {self._table_name} WHERE embedding <=> $1 > $3 ORDER BY embedding <=> $1 DESC LIMIT $2', embedding, top_k, self.cosine_better_than_threshold)

rows = []
for row in result:
data = json.loads(row['data'])
rows.append({
**data,
'id': row['id'],
'distance': 1 - row['similarity'],
'similarity': row['similarity']
})
return rows
async def upsert(self, data: dict[str, dict]):
logger.info(f"Inserting {len(data)} vectors to {self.namespace}")
if not len(data):
logger.warning("You insert an empty data to vector DB")
return []
list_data = [
{
"__id__": k,
**{k1: v1 for k1, v1 in v.items() if k1 in self.meta_fields},
}
for k, v in data.items()
]
contents = [v["content"] for v in data.values()]
batches = [
contents[i : i + self._max_batch_size]
for i in range(0, len(contents), self._max_batch_size)
]
embeddings_list = await asyncio.gather(
*[self.embedding_func(batch) for batch in batches]
)
embeddings_list = np.concatenate(embeddings_list)
insert_rows = []
for i, d in enumerate(list_data):
row = [d["__id__"], embeddings_list[i], json.dumps(d)]
insert_rows.append(row)
async with self.conn_fetcher() as conn:
conn: asyncpg.Connection
stmt = f"INSERT INTO {self._table_name} (id, embedding, data) VALUES ($1, $2, $3) ON CONFLICT (id) DO UPDATE SET embedding = $2, data = $3"
return await conn.executemany(stmt, insert_rows)
3 changes: 3 additions & 0 deletions requirements.txt
Original file line number Diff line number Diff line change
Expand Up @@ -7,3 +7,6 @@ hnswlib
xxhash
tenacity
dspy-ai
pgvector==0.3.3
asyncpg==0.29.0
nest_asyncio==1.6.0
204 changes: 204 additions & 0 deletions tests/test_asyncpg_vector_storage.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,204 @@
import numpy as np
import pytest
from dataclasses import asdict
from nano_graphrag import GraphRAG
from nano_graphrag._utils import wrap_embedding_func_with_attrs

from nano_graphrag.storage.asyncpg import AsyncpgVectorStorage
import asyncpg
from nano_graphrag.graphrag import always_get_an_event_loop
WORKING_DIR = "nano_graphrag_cache_asyncpg_vector_storage_test"
dsn='postgresql://username:[email protected]:12345/db'

@pytest.fixture(scope="function")
def setup_teardown():

yield
loop = always_get_an_event_loop()
async def clean_table():
conn: asyncpg.Connection = await asyncpg.connect(dsn)
async with conn.transaction():
tables = await conn.fetch(
f"SELECT table_name FROM information_schema.tables WHERE table_name LIKE '{WORKING_DIR}%'"
)

for table in tables:
await conn.execute(f"DROP TABLE {table['table_name']} CASCADE")
loop.run_until_complete(clean_table())


@wrap_embedding_func_with_attrs(embedding_dim=384, max_token_size=8192)
async def mock_embedding(texts: list[str]) -> np.ndarray:
return np.random.rand(len(texts), 384)


@pytest.fixture
def asyncpg_storage(setup_teardown):
rag = GraphRAG(working_dir=WORKING_DIR, embedding_func=mock_embedding)
return AsyncpgVectorStorage(
namespace="test",
global_config=asdict(rag),
embedding_func=mock_embedding,
meta_fields={"entity_name"},
dsn=dsn
)


@pytest.mark.asyncio
async def test_upsert_and_query(asyncpg_storage):
test_data = {
"1": {"content": "Test content 1", "entity_name": "Entity 1"},
"2": {"content": "Test content 2", "entity_name": "Entity 2"},
}

await asyncpg_storage.upsert(test_data)

results = await asyncpg_storage.query("Test query", top_k=2)

assert len(results) == 2
assert all(isinstance(result, dict) for result in results)
assert all(
"id" in result and "distance" in result and "similarity" in result
for result in results
)


@pytest.mark.asyncio
async def test_persistence(setup_teardown):
rag = GraphRAG(working_dir=WORKING_DIR, embedding_func=mock_embedding)
initial_storage = AsyncpgVectorStorage(
namespace="test",
global_config=asdict(rag),
embedding_func=mock_embedding,
meta_fields={"entity_name"},
dsn=dsn
)

test_data = {
"1": {"content": "Test content 1", "entity_name": "Entity 1"},
}

await initial_storage.upsert(test_data)
await initial_storage.index_done_callback()

new_storage = AsyncpgVectorStorage(
namespace="test",
global_config=asdict(rag),
embedding_func=mock_embedding,
meta_fields={"entity_name"},
dsn=dsn
)

results = await new_storage.query("Test query", top_k=1)

assert len(results) == 1
assert results[0]["id"] == "1"
assert "entity_name" in results[0]


@pytest.mark.asyncio
async def test_persistence_large_dataset(setup_teardown):
rag = GraphRAG(working_dir=WORKING_DIR, embedding_func=mock_embedding)
initial_storage = AsyncpgVectorStorage(
namespace="test_large",
global_config=asdict(rag),
embedding_func=mock_embedding,
meta_fields={"entity_name"},
dsn=dsn
)

large_data = {
str(i): {"content": f"Test content {i}", "entity_name": f"Entity {i}"}
for i in range(1000)
}
await initial_storage.upsert(large_data)
await initial_storage.index_done_callback()

new_storage = AsyncpgVectorStorage(
namespace="test_large",
global_config=asdict(rag),
embedding_func=mock_embedding,
meta_fields={"entity_name"},
dsn=dsn
)

results = await new_storage.query("Test query", top_k=500)
assert len(results) == 500
assert all(result["id"] in large_data for result in results)


@pytest.mark.asyncio
async def test_upsert_with_existing_ids(asyncpg_storage):
test_data = {
"1": {"content": "Test content 1", "entity_name": "Entity 1"},
"2": {"content": "Test content 2", "entity_name": "Entity 2"},
}

await asyncpg_storage.upsert(test_data)

updated_data = {
"1": {"content": "Updated content 1", "entity_name": "Updated Entity 1"},
"3": {"content": "Test content 3", "entity_name": "Entity 3"},
}

await asyncpg_storage.upsert(updated_data)

results = await asyncpg_storage.query("Updated", top_k=3)

assert len(results) == 3
assert any(
result["id"] == "1" and result["entity_name"] == "Updated Entity 1"
for result in results
)
assert any(
result["id"] == "2" and result["entity_name"] == "Entity 2"
for result in results
)
assert any(
result["id"] == "3" and result["entity_name"] == "Entity 3"
for result in results
)


@pytest.mark.asyncio
async def test_large_batch_upsert(asyncpg_storage):
batch_size = 30
large_data = {
str(i): {"content": f"Test content {i}", "entity_name": f"Entity {i}"}
for i in range(batch_size)
}

await asyncpg_storage.upsert(large_data)

results = await asyncpg_storage.query("Test query", top_k=batch_size)
assert len(results) == batch_size
assert all(isinstance(result, dict) for result in results)
assert all(
"id" in result and "distance" in result and "similarity" in result
for result in results
)


@pytest.mark.asyncio
async def test_empty_data_insertion(asyncpg_storage):
empty_data = {}
await asyncpg_storage.upsert(empty_data)

results = await asyncpg_storage.query("Test query", top_k=1)
assert len(results) == 0


@pytest.mark.asyncio
async def test_query_with_no_results(asyncpg_storage):
results = await asyncpg_storage.query("Non-existent query", top_k=5)
assert len(results) == 0

test_data = {
"1": {"content": "Test content 1", "entity_name": "Entity 1"},
}
await asyncpg_storage.upsert(test_data)

results = await asyncpg_storage.query("Non-existent query", top_k=5)
assert len(results) == 1
assert all(0 <= result["similarity"] <= 1 for result in results)
assert "entity_name" in results[0]
Loading