Deploying Lung Cancer Machine Learning model to web Applications
Using scikit-learn, pickle, Flask, Microsoft Azure and ipywidgets to fully deploy a Python machine learning algorithm into a live, production environment
- Step 1: Develop a Machine Learning Algorithm
- Step 2: Make an Individual Prediction from the Trained Model
- Step 3: Develop a Web Service Wrapper
- Step 4: Deploy the Web Service to Microsoft Azure
- Step 5: Building a Client Application to Consume the Azure-deployed Web Service
- Gender: M(male), F(female)
- Age: Age of the patient
- Smoking: YES=2, NO=1.
- Yellow fingers: YES=2, NO=1.
- Anxiety: YES=2, NO=1.
- Peer_pressure: YES=2, NO=1.
- Chronic Disease: YES=2, NO=1.
- Fatigue: YES=2, NO=1.
- Allergy: YES=2, NO=1.
- Wheezing: YES=2, NO=1.
- Alcohol: YES=2, NO=1.
- Coughing: YES=2, NO=1.
- Shortness of Breath: YES=2, NO=1.
- Swallowing Difficulty: YES=2, NO=1.
- Chest pain: YES=2, NO=1.
- Lung Cancer: YES, NO.