Skip to content

harbidel/Lung-Cancer-Model-Deploy-to-Production

Repository files navigation

Lung-Cancer-Model-Deploy-to-Live-Production

Deploying Lung Cancer Machine Learning model to web Applications

Using scikit-learn, pickle, Flask, Microsoft Azure and ipywidgets to fully deploy a Python machine learning algorithm into a live, production environment

Steps

  • Step 1: Develop a Machine Learning Algorithm
  • Step 2: Make an Individual Prediction from the Trained Model
  • Step 3: Develop a Web Service Wrapper
  • Step 4: Deploy the Web Service to Microsoft Azure
  • Step 5: Building a Client Application to Consume the Azure-deployed Web Service

Attribute details:

  1. Gender: M(male), F(female)
  2. Age: Age of the patient
  3. Smoking: YES=2, NO=1.
  4. Yellow fingers: YES=2, NO=1.
  5. Anxiety: YES=2, NO=1.
  6. Peer_pressure: YES=2, NO=1.
  7. Chronic Disease: YES=2, NO=1.
  8. Fatigue: YES=2, NO=1.
  9. Allergy: YES=2, NO=1.
  10. Wheezing: YES=2, NO=1.
  11. Alcohol: YES=2, NO=1.
  12. Coughing: YES=2, NO=1.
  13. Shortness of Breath: YES=2, NO=1.
  14. Swallowing Difficulty: YES=2, NO=1.
  15. Chest pain: YES=2, NO=1.
  16. Lung Cancer: YES, NO.

About

Deploying Lung Cancer Machine Learning model to web Applications

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published