Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Export to recurrentjs #157

Open
wants to merge 10 commits into
base: master
Choose a base branch
from
1 change: 1 addition & 0 deletions .gitignore
Original file line number Diff line number Diff line change
@@ -1 +1,2 @@
*.t7
*.t7.json
136 changes: 13 additions & 123 deletions Readme.md
Original file line number Diff line number Diff line change
@@ -1,137 +1,27 @@
# Adding RecurrentJS support to char-rnn

# char-rnn
This repo forks [Karpathy's Char-rnn](https://github.com/karpathy/char-rnn) to add a file that allows users to export their models trained in Torch into a JSON format that can be read by [RecurrentJS](https://github.com/karpathy/recurrentjs). This should allow users to train complex models using Torch on their GPUs and deploy them in a simple webpage for everyone to use with their browsers.

This code implements **multi-layer Recurrent Neural Network** (RNN, LSTM, and GRU) for training/sampling from character-level language models. In other words the model takes one text file as input and trains a Recurrent Neural Network that learns to predict the next character in a sequence. The RNN can then be used to genrate text character by character that will look like the original training data. The context of this code base is described in detail in my [blog post](http://karpathy.github.io/2015/05/21/rnn-effectiveness/).
The current version I am sharing is very much in development, and while it does produce a JSON file that's in the right ballpark, it doesn't work yet.

If you are new to Torch/Lua/Neural Nets, it might be helpful to know that this code is really just a slightly more fancy version of this [100-line gist](https://gist.github.com/karpathy/d4dee566867f8291f086) that I wrote in Python/numpy. The code in this repo additionally: allows for multiple layers, uses an LSTM instead of a vanilla RNN, has more supporting code for model checkpointing, and is of course much more efficient since it uses mini-batches and can run on a GPU.
To help development, I propose all contributors start by fixing the training set to be the same as that on [Karpathy's demo](http://cs.stanford.edu/people/karpathy/recurrentjs/), which is a collection of Paul Graham's essays. The collection itself is tiny, only ~1400 lines, so this means that we can get a model that works while still being tiny enough as to allow manual inspection. The data is already included in the /data/ folder, but I already trained a model in /examples/PaulGraham.t7 using the same parameters as in the RecurrentJS examples (2 layers of size 20 each). I have already run the conversion script and store the result inside /examples/PaulGrahamModel.json (minified) and /examples/PaulGrahamModel.pretty.json (human-readable). For comparison, I have also run RecurrentJS for a bit and stored the net in /examples/PaulGrahamRecurrentJSModel.pretty.json so that one can visually see the differences.

## Requirements
The objective at this stage is to paste the conversion of the .t7 model into [Karpathy's demo](http://cs.stanford.edu/people/karpathy/recurrentjs/) and have it working immediately.

This code is written in Lua and requires [Torch](http://torch.ch/). If you're on Ubuntu, installing Torch in your home directory may look something like:
There are currently some problems that I have identified:

```bash
$ curl -s https://raw.githubusercontent.com/torch/ezinstall/master/install-deps | bash
$ git clone https://github.com/torch/distro.git ~/torch --recursive
$ cd ~/torch;
$ ./install.sh # and enter "yes" at the end to modify your bashrc
$ source ~/.bashrc
```

See the Torch installation documentation for more details. After Torch is installed we need to get a few more packages using [LuaRocks](https://luarocks.org/) (which already came with the Torch install). In particular:

```bash
$ luarocks install nngraph
$ luarocks install optim
$ luarocks install nn
```

If you'd like to train on an NVIDIA GPU using CUDA (this can be to about 15x faster), you'll of course need the GPU, and you will have to install the [CUDA Toolkit](https://developer.nvidia.com/cuda-toolkit). Then get the `cutorch` and `cunn` packages:

```bash
$ luarocks install cutorch
$ luarocks install cunn
```

If you'd like to use OpenCL GPU instead (e.g. ATI cards), you will instead need to install the `cltorch` and `clnn` packages, and then use the option `-opencl 1` during training ([cltorch issues](https://github.com/hughperkins/cltorch/issues)):

```bash
$ luarocks install cltorch
$ luarocks install clnn
```

## Usage

### Data

All input data is stored inside the `data/` directory. You'll notice that there is an example dataset included in the repo (in folder `data/tinyshakespeare`) which consists of a subset of works of Shakespeare. I'm providing a few more datasets on [this page](http://cs.stanford.edu/people/karpathy/char-rnn/).
1. The "size" parameter for the RNN is not the same for the two models (Torch and JS). In Torch, each Linear layer has its own bias, so there are as many bias vectors as there are weight matrices (so 1 per gate per layer for both x and h). In JS, each gate has only 1 bias. We might either change the JS code or we might try to "hack" the format a little bit by adding 1's to the input vectors, but I haven't worked on the maths just yet.

**Your own data**: If you'd like to use your own data then create a single file `input.txt` and place it into a folder in the `data/` directory. For example, `data/some_folder/input.txt`. The first time you run the training script it will do some preprocessing and write two more convenience cache files into `data/some_folder`.
2. The JS code was made to enable training in a browser in reasonable time. This meant that Karpathy added an extra layer before the LSTMs that mapped the vocabulary (of size ~50-100) to a much smaller embedding (the example uses size 5). We won't care about training, so given that we will only do forward propagation we should be able to afford skipping this embedding step, but the JS code expects to find a matrix _Wil_ that contains the weights for the embedding. I have therefore hacked it a bit by setting an embedding size to be the same as the vocabulary size, and setting Wil to be an identity matrix.

**Dataset sizes**: Note that if your data is too small (1MB is already considered very small) the RNN won't learn very effectively. Remember that it has to learn everything completely from scratch. Conversely if your data is large (more than about 2MB), feel confident to increase `rnn_size` and train a bigger model (see details of training below). It will work *significantly better*. For example with 6MB you can easily go up to `rnn_size` 300 or even more. The biggest that fits on my GPU and that I've trained with this code is `rnn_size` 700 with `num_layers` 3 (2 is default).
3. It's simple to convert a Torch table into JSON using json.encode(), but that does not preserve the order of the elements. LUA tables are inherently unordered when their key is not an integer. If you do use an integer as key that's cool, but then you have to be more careful when building the JSON file. I am still not 100% of the impact of this lack of order, so I am currently leaving this aside assuming that it might work even when not ordered.

### Training
I think that if these 3 issues get resolved we should be able to make this work.

Start training the model using `train.lua`. As a sanity check, to run on the included example dataset simply try:
Usage:

```
$ th train.lua -gpuid -1
$ th export_to_recurrentjs.lua
```

Notice that here we are setting the flag `gpuid` to -1, which tells the code to train using CPU, otherwise it defaults to GPU 0. There are many other flags for various options. Consult `$ th train.lua -help` for comprehensive settings. Here's another example that trains a bigger network and also shows how you can run on your own custom dataset (this already assumes that `data/some_folder/input.txt` exists):

```
$ th train.lua -data_dir data/some_folder -rnn_size 512 -num_layers 2 -dropout 0.5
```

**Checkpoints.** While the model is training it will periodically write checkpoint files to the `cv` folder. The frequency with which these checkpoints are written is controlled with number of iterations, as specified with the `eval_val_every` option (e.g. if this is 1 then a checkpoint is written every iteration). The filename of these checkpoints contains a very important number: the **loss**. For example, a checkpoint with filename `lm_lstm_epoch0.95_2.0681.t7` indicates that at this point the model was on epoch 0.95 (i.e. it has almost done one full pass over the training data), and the loss on validation data was 2.0681. This number is very important because the lower it is, the better the checkpoint works. Once you start to generate data (discussed below), you will want to use the model checkpoint that reports the lowest validation loss. Notice that this might not necessarily be the last checkpoint at the end of training (due to possible overfitting).

Another important quantities to be aware of are `batch_size` (call it B), `seq_length` (call it S), and the `train_frac` and `val_frac` settings. The batch size specifies how many streams of data are processed in parallel at one time. The sequence length specifies the length of each stream, which is also the limit at which the gradients can propagate backwards in time. For example, if `seq_length` is 20, then the gradient signal will never backpropagate more than 20 time steps, and the model might not *find* dependencies longer than this length in number of characters. Thus, if you have a very difficult dataset where there are a lot of long-term dependencies you will want to increase this setting. Now, if at runtime your input text file has N characters, these first all get split into chunks of size `BxS`. These chunks then get allocated across three splits: train/val/test according to the `frac` settings. By default `train_frac` is 0.95 and `val_frac` is 0.05, which means that 95% of our data chunks will be trained on and 5% of the chunks will be used to estimate the validation loss (and hence the generalization). If your data is small, it's possible that with the default settings you'll only have very few chunks in total (for example 100). This is bad: In these cases you may want to decrease batch size or sequence length.

Note that you can also initialize parameters from a previously saved checkpoint using `init_from`.

### Sampling

Given a checkpoint file (such as those written to `cv`) we can generate new text. For example:

```
$ th sample.lua cv/some_checkpoint.t7 -gpuid -1
```

Make sure that if your checkpoint was trained with GPU it is also sampled from with GPU, or vice versa. Otherwise the code will (currently) complain. As with the train script, see `$ th sample.lua -help` for full options. One important one is (for example) `-length 10000` which would generate 10,000 characters (default = 2000).

**Temperature**. An important parameter you may want to play with is `-temperature`, which takes a number in range \(0, 1\] (0 not included), default = 1. The temperature is dividing the predicted log probabilities before the Softmax, so lower temperature will cause the model to make more likely, but also more boring and conservative predictions. Higher temperatures cause the model to take more chances and increase diversity of results, but at a cost of more mistakes.

**Priming**. It's also possible to prime the model with some starting text using `-primetext`. This starts out the RNN with some hardcoded characters to *warm* it up with some context before it starts generating text. E.g. a fun primetext might be `-primetext "the meaning of life is "`.

**Training with GPU but sampling on CPU**. Right now the solution is to use the `convert_gpu_cpu_checkpoint.lua` script to convert your GPU checkpoint to a CPU checkpoint. In near future you will not have to do this explicitly. E.g.:

```
$ th convert_gpu_cpu_checkpoint.lua cv/lm_lstm_epoch30.00_1.3950.t7
```

will create a new file `cv/lm_lstm_epoch30.00_1.3950.t7_cpu.t7` that you can use with the sample script and with `-gpuid -1` for CPU mode.

Happy sampling!

## Tips and Tricks

### Monitoring Validation Loss vs. Training Loss
If you're somewhat new to Machine Learning or Neural Networks it can take a bit of expertise to get good models. The most important quantity to keep track of is the difference between your training loss (printed during training) and the validation loss (printed once in a while when the RNN is run on the validation data (by default every 1000 iterations)). In particular:

- If your training loss is much lower than validation loss then this means the network might be **overfitting**. Solutions to this are to decrease your network size, or to increase dropout. For example you could try dropout of 0.5 and so on.
- If your training/validation loss are about equal then your model is **underfitting**. Increase the size of your model (either number of layers or the raw number of neurons per layer)

### Approximate number of parameters

The two most important parameters that control the model are `rnn_size` and `num_layers`. I would advise that you always use `num_layers` of either 2/3. The `rnn_size` can be adjusted based on how much data you have. The two important quantities to keep track of here are:

- The number of parameters in your model. This is printed when you start training.
- The size of your dataset. 1MB file is approximately 1 million characters.

These two should be about the same order of magnitude. It's a little tricky to tell. Here are some examples:

- I have a 100MB dataset and I'm using the default parameter settings (which currently print 150K parameters). My data size is significantly larger (100 mil >> 0.15 mil), so I expect to heavily underfit. I am thinking I can comfortably afford to make `rnn_size` larger.
- I have a 10MB dataset and running a 10 million parameter model. I'm slightly nervous and I'm carefully monitoring my validation loss. If it's larger than my training loss then I may want to try to increase dropout a bit and see if that heps the validation loss.

### Best models strategy

The winning strategy to obtaining very good models (if you have the compute time) is to always err on making the network larger (as large as you're willing to wait for it to compute) and then try different dropout values (between 0,1). Whatever model has the best validation performance (the loss, written in the checkpoint filename, low is good) is the one you should use in the end.

It is very common in deep learning to run many different models with many different hyperparameter settings, and in the end take whatever checkpoint gave the best validation performance.

By the way, the size of your training and validation splits are also parameters. Make sure you have a decent amount of data in your validation set or otherwise the validation performance will be noisy and not very informative.

## Additional Pointers and Acknowledgements

This code was originally based on Oxford University Machine Learning class [practical 6](https://github.com/oxford-cs-ml-2015/practical6), which is in turn based on [learning to execute](https://github.com/wojciechz/learning_to_execute) code from Wojciech Zaremba. Chunks of it were also developed in collaboration with my labmate [Justin Johnson](http://cs.stanford.edu/people/jcjohns/).

To learn more about RNN language models I recommend looking at:

- [My recent talk](https://skillsmatter.com/skillscasts/6611-visualizing-and-understanding-recurrent-networks) on char-rnn
- [Generating Sequences With Recurrent Neural Networks](http://arxiv.org/abs/1308.0850) by Alex Graves
- [Generating Text with Recurrent Neural Networks](http://www.cs.utoronto.ca/~ilya/pubs/2011/LANG-RNN.pdf) by Ilya Sutskever
- [Tomas Mikolov's Thesis](http://www.fit.vutbr.cz/~imikolov/rnnlm/thesis.pdf)

## License

MIT
(remind that every parameter is currently hardcoded)
Loading