Learn how Aibolit works in our White Paper.
First, you install it (you must have Python 3.7.7 and Pip installed):
$ pip3 install aibolit
To analyze your Java sources, located at src/java
(for example), run:
$ aibolit check --filenames src/java/File.java src/java/AnotherFile.java
or
$ aibolit recommend --filenames src/java/File.java src/java/AnotherFile.java
Also, you can set a folder with Java files:
$ aibolit recommend --folder src/java
It will run recommendation function for the model (model is located in aibolit/binary_files/model.pkl.
The model finds a pattern which contribution is the largest to the Cyclomatic Complexity.
If anything is found, you will see all recommendations for the mentioned patterns.
You can see the list of all patterns in Patterns.md.
The output of recommendation will be redirected to the stdout.
If the program has the 0
exit code, it means that all analyzed files do not have any issues.
If the program has the 1
exit code, it means that at least 1 analyzed file has an issue.
If the program has the 2
exit code, it means that program crash occurred.
You can suppress certain patterns (comma separated value) and they will be ignored. They won't be included into the report, also their importance will be set to 0.
$ aibolit recommend --folder src/java --suppress=P12,P13
You can change the format, using the --format
parameter. The default value is --format=compact
.
$ aibolit recommend --folder src/java --format=compact --full
It will output sorted patterns by importance in descending order and grouped by a pattern name:
Show all patterns
/mnt/d/src/java/Configuration.java score: 127.67642529949538
/mnt/d/src/java/Configuration.java[3840]: Var in the middle (P21: 30.95612931128819 1/4)
/mnt/d/src/java/Configuration.java[3844]: Var in the middle (P21: 30.95612931128819 1/4)
/mnt/d/src/java/Configuration.java[3848]: Var in the middle (P21: 30.95612931128819 1/4)
/mnt/d/src/java/Configuration.java[2411]: Null Assignment (P28: 10.76 2/4)
/mnt/d/src/java/Configuration.java[826]: Many primary constructors (P9: 10.76 3/4)
/mnt/d/src/java/Configuration.java[840]: Many primary constructors (P9: 10.76 3/4)
/mnt/d/src/java/Configuration.java[829]: Partial synchronized (P14: 0.228 4/4)
/mnt/d/src/java/Configuration.java[841]: Partial synchronized (P14: 0.228 4/4)
/mnt/d/src/java/Configuration.java[865]: Partial synchronized (P14: 0.228 4/4)
/mnt/d/src/java/Configuration.java[2586]: Partial synchronized (P14: 0.228 4/4)
/mnt/d/src/java/Configuration.java[3230]: Partial synchronized (P14: 0.228 4/4)
/mnt/d/src/java/Configuration.java[3261]: Partial synchronized (P14: 0.228 4/4)
/mnt/d/src/java/Configuration.java[3727]: Partial synchronized (P14: 0.228 4/4)
/mnt/d/src/java/Configuration.java[3956]: Partial synchronized (P14: 0.228 4/4)
/mnt/d/src/java/ErrorExample.java: error when calculating patterns: Can't count P1 metric:
Total score: 127.67642529949538
(P21: 30.95612931128819 1/4)
means the following:
30.95612931128819 is the score of this pattern
1 is the position of this pattern in the total list of patterns found in the file
4 is the total number of found patterns
You can use format=long
. In this case all results will be sorted by a line number:
Show all patterns
/mnt/d/src/java/Configuration.java: some issues found
/mnt/d/src/java/Configuration.java score: 127.67642529949538
/mnt/d/src/java/Configuration.java[826]: Many primary constructors (P9: 10.76 3/4)
/mnt/d/src/java/Configuration.java[829]: Partial synchronized (P14: 0.228 4/4)
/mnt/d/src/java/Configuration.java[840]: Many primary constructors (P9: 10.76 3/4)
/mnt/d/src/java/Configuration.java[841]: Partial synchronized (P14: 0.228 4/4)
/mnt/d/src/java/Configuration.java[865]: Partial synchronized (P14: 0.228 4/4)
/mnt/d/src/java/Configuration.java[2411]: Null Assignment (P28: 10.76 2/4)
/mnt/d/src/java/Configuration.java[2586]: Partial synchronized (P14: 0.228 4/4)
/mnt/d/src/java/Configuration.java[3230]: Partial synchronized (P14: 0.228 4/4)
/mnt/d/src/java/Configuration.java[3261]: Partial synchronized (P14: 0.228 4/4)
/mnt/d/src/java/Configuration.java[3727]: Partial synchronized (P14: 0.228 4/4)
/mnt/d/src/java/Configuration.java[3840]: Var in the middle (P21: 30.95612931128819 1/4)
/mnt/d/src/java/Configuration.java[3844]: Var in the middle (P21: 30.95612931128819 1/4)
/mnt/d/src/java/Configuration.java[3848]: Var in the middle (P21: 30.95612931128819 1/4)
/mnt/d/src/java/Configuration.java[3956]: Partial synchronized (P14: 0.228 4/4)
/mnt/d/src/java/ErrorExample.java: error when calculating patterns: Can't count P1 metric:
/mnt/d/src/java/MavenSlice.java: your code is perfect in aibolit's opinion
Total score: 127.67642529949538
You can also choose xml format. It will have the same format as compact
mode, but xml will be created:
<report>
<score>127.67642529949538</score>
<!--Show all patterns-->
<files>
<file>
<path>/mnt/d/src/java/Configuration.java</path>
<summary>Some issues found</summary>
<score>127.67642529949538</score>
<patterns>
<pattern code="P13">
<details>Null check</details>
<lines>
<number>294</number>
<number>391</number>
</lines>
<score>30.95612931128819</score>
<order>1/4</order>
</pattern>
<pattern code="P12">
<details>Non final attribute</details>
<lines>
<number>235</number>
</lines>
<score>10.76</score>
<order>2/4</order>
</pattern>
<pattern code="P21">
<details>Var in the middle</details>
<lines>
<number>235</number>
</lines>
<score>2.056</score>
<order>3/4</order>
</pattern>
<pattern code="P28">
<details>Null Assignment</details>
<lines>
<number>2411</number>
</lines>
<score>0.228</score>
<order>4/4</order>
</pattern>
</patterns>
</file>
<file>
<path>/mnt/d/src/java/ErrorExample.java</path>
<summary>Error when calculating patterns: Can't count P1 metric: </summary>
</file>
<file>
<path>/mnt/d/src/java/MavenSlice.java</path>
<summary>Your code is perfect in aibolit's opinion</summary>
</file>
</files>
</report>
The score is the relative importance of the pattern (there is no range for it). The larger score is, the most important pattern is. E.g., if you have several patterns, first you need to fix the pattern with the score 5.45:
/mnt/d/src/java/SampleTests.java[43]: Non final attribute (P12: 5.45 1/10)
/mnt/d/src/java/SampleTests.java[44]: Non final attribute (P12: 5.45 1/10)
/mnt/d/src/java/SampleTests.java[80]: Var in the middle (P21: 3.71 2/10)
/mnt/d/src/java/SampleTests.java[121]: Var in the middle (P21: 3.71 2/10)
/mnt/d/src/java/SampleTests.java[122]: Var declaration distance for 5 lines (P20_5: 2.13 3/10)
/mnt/d/src/java/SampleTests.java[41]: Non final class (P24: 1.95 4/10)
/mnt/d/src/java/SampleTests.java[59]: Force Type Casting (P5: 1.45 5/10)
/mnt/d/src/java/SampleTests.java[122]: Var declaration distance for 7 lines (P20_7: 1.07 6/10)
/mnt/d/src/java/SampleTests.java[122]: Var declaration distance for 11 lines (P20_11: 0.78 7/10)
/mnt/d/src/java/SampleTests.java[51]: Protected Method (P30: 0.60 8/10)
/mnt/d/src/java/SampleTests.java[52]: Super Method (P18: 0.35 9/10)
/mnt/d/src/java/SampleTests.java[100]: Partial synchronized (P14: 0.08 10/10)
/mnt/d/src/java/SampleTests.java[106]: Partial synchronized (P14: 0.08 10/10)
/mnt/d/src/java/SampleTests.java[113]: Partial synchronized (P14: 0.08 10/10)
The score per class is the sum of all patterns scores.
/mnt/d/src/java/SampleTests.java score: 17.54698560768407
The total score is an average among all java files in a project (folder you've set to analyze)
Total average score: 4.0801854775508914
If you have 2 scores of different projects, the worst project is that one which has the highest score.
Model is automatically installed with aibolit package, but you can also try your own model
$ aibolit recommend --folder src/java --model /mnt/d/some_folder/model.pkl
You can get full report with --full
command, then all patterns will be included to the output:
$ aibolit recommend --folder src/java --full
You can exclude folder with --exclude
command. The last parameter is the folder to exclude,
the rest of them are glob patterns.
$ aibolit recommend --folder src/java --exclude=**/*Test*.java --exclude=**/*Impl*.java --exclude=/mnt/d/src/java/tests
If you need help, run
$ aibolit recommend --help
Train
command does the following:
- Calculates patterns and metrics
- Creates a dataset
- Trains model and save it
Train works only with cloned git repository.
-
Clone aibolit repository
-
Go to
cloned_aibolit_path
-
Run
pip install .
-
Set env variable
export HOME_AIBOLIT=cloned_aibolit_path
(example for Linux). -
Set env variable
TARGET_FOLDER
if you need to save all dataset files to another directory. -
You have to specify train and test dataset: set the
HOME_TRAIN_DATASET
environment variable for train dataset and theHOME_TEST_DATASET
environment variable for test dataset. Usually, these files are inscripts/target/08
directory after dataset collection (if you have not skipped it). But you can use your own datasets.Please notice, that if you set
TARGET_FOLDER
, your dataset files will be inTARGET_FOLDER/target
. That is why it is necessary to set HOME_TRAIN_DATASET=TARGET_FOLDER
\target\08\08-train.csv, HOME_TEST_DATASET =TARGET_FOLDER
\target\08\08-test.csv -
If you need to set up own directory where model will be saved, set up also
SAVE_MODEL_FOLDER
environment variable. Otherwise model will be saved intocloned_aibolit_path/aibolit/binary_files/model.pkl
-
If you need to set up own folder with Java files, use
--java_folder parameter
, the default value will bescripts/target/01
of aibolit cloned repo
Or you can use our docker image (link will be soon here)
Run train pipeline:
$ aibolit train --java_folder=src/java [--max_classes=100] [--dataset_file]
If you need to save the dataset with all calculated metrics to a different directory, you need to use dataset_file
parameter
$ aibolit train --java_folder=src/java --dataset_file /mnt/d/new_dir/dataset.csv
You can skip dataset collection with skip_collect_dataset
parameter. In this case
the model will be trained with predefined dataset (see 5 point):
$ aibolit train --java_folder=src/java --skip_collect_dataset
First, you need to install:
Install the following packages if you don't have :
$ apt-get install ruby-dev libz-dev libxml2
Then, you fork the repo and make the changes. Then, you make sure the build is still clean, by running:
$ make
To build white paper:
$ cd wp
$ latexmk -c && latexmk -pdf wp.tex
If everything is fine, submit a pull request.
Using Docker recommendation pipeline
$ docker run --rm -it \
-v <absolute_path_to_folder_with_classes>:/in \
-v <absolute_path_to_out_dir>:/out \
cqfn/aibolit-image