Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

spring cleaning: removing bugs and code smells #261

Merged
merged 20 commits into from
Apr 2, 2024
Merged
Show file tree
Hide file tree
Changes from 18 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
161 changes: 85 additions & 76 deletions examples/example-0-aln-minimal.ipynb

Large diffs are not rendered by default.

1 change: 0 additions & 1 deletion neurolib/models/aln/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -60,7 +60,6 @@ def __init__(self, params=None, Cmat=None, Dmat=None, lookupTableFileName=None,
:param Dmat: Distance matrix between all nodes (in mm)
:param lookupTableFileName: Filename for precomputed transfer functions and tables
:param seed: Random number generator seed
:param simulateChunkwise: Chunkwise time integration (for lower memory use)
"""

# Global attributes
Expand Down
20 changes: 4 additions & 16 deletions neurolib/models/bold/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,12 +36,12 @@ def __init__(self, N, dt, normalize_input=False, normalize_max=50):
self.V_BOLD = np.ones((N,))
# Blood volume

def run(self, activity, append=False):
def run(self, activity):
"""Runs the Balloon-Windkessel BOLD simulation.

Parameters:
:param activity: Neuronal firing rate in Hz

:param activity: Neuronal firing rate in Hz
:type activity: numpy.ndarray
"""
Expand All @@ -50,7 +50,6 @@ def run(self, activity, append=False):
BOLD_chunk, self.X_BOLD, self.F_BOLD, self.Q_BOLD, self.V_BOLD = simulateBOLD(
activity,
self.dt * 1e-3,
10000 * np.ones((self.N,)),
X=self.X_BOLD,
F=self.F_BOLD,
Q=self.Q_BOLD,
Expand All @@ -67,19 +66,8 @@ def run(self, activity, append=False):
* self.dt
)

if self.BOLD.shape[1] == 0:
# add new data
self.t_BOLD = t_BOLD_resampled
self.BOLD = BOLD_resampled
elif append is True:
# append new data to old data
self.t_BOLD = np.hstack((self.t_BOLD, t_BOLD_resampled))
self.BOLD = np.hstack((self.BOLD, BOLD_resampled))
else:
# overwrite old data
self.t_BOLD = t_BOLD_resampled
self.BOLD = BOLD_resampled

Comment on lines -70 to -82
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

You seem to have the append=True case, why?

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The functionality for saving outputs is already in models/model.py.

self.t_BOLD = t_BOLD_resampled
self.BOLD = BOLD_resampled
self.BOLD_chunk = BOLD_resampled

self.idxLastT = self.idxLastT + activity.shape[1]
7 changes: 2 additions & 5 deletions neurolib/models/bold/timeIntegration.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@
import numba


def simulateBOLD(Z, dt, voxelCounts, X=None, F=None, Q=None, V=None):
def simulateBOLD(Z, dt, voxelCounts=None, X=None, F=None, Q=None, V=None):
"""Simulate BOLD activity using the Balloon-Windkessel model.
See Friston 2000, Friston 2003 and Deco 2013 for reference on how the BOLD signal is simulated.
The returned BOLD signal should be downsampled to be comparable to a recorded fMRI signal.
Expand All @@ -11,7 +11,7 @@ def simulateBOLD(Z, dt, voxelCounts, X=None, F=None, Q=None, V=None):
:type Z: numpy.ndarray
:param dt: dt of input activity in s
:type dt: float
:param voxelCounts: Number of voxels in each region (not used yet!)
:param voxelCounts: Number of voxels in each region (not used yet!) # TODO
:type voxelCounts: numpy.ndarray
:param X: Initial values of Vasodilatory signal, defaults to None
:type X: numpy.ndarray, optional
Expand All @@ -28,9 +28,6 @@ def simulateBOLD(Z, dt, voxelCounts, X=None, F=None, Q=None, V=None):

N = np.shape(Z)[0]

if "voxelCounts" not in globals():
voxelCounts = np.ones((N,))

# Balloon-Windkessel model parameters (from Friston 2003):
# Friston paper: Nonlinear responses in fMRI: The balloon model, Volterra kernels, and other hemodynamics
# Note: the distribution of each Balloon-Windkessel models parameters are given per voxel
Expand Down
176 changes: 81 additions & 95 deletions neurolib/models/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -66,45 +66,47 @@ def initializeBold(self):
self.boldInitialized = True
# logging.info(f"{self.name}: BOLD model initialized.")

def simulateBold(self, t, variables, append=False):
def get_bold_variable(self, variables):
default_index = self.state_vars.index(self.default_output)
return variables[default_index]

def simulateBold(self, bold_variable, append=True):
"""Gets the default output of the model and simulates the BOLD model.
Adds the simulated BOLD signal to outputs.
"""
if self.boldInitialized:
# first we loop through all state variables
for svn, sv in zip(self.state_vars, variables):
# the default output is used as the input for the bold model
if svn == self.default_output:
bold_input = sv[:, self.startindt :]
# logging.debug(f"BOLD input `{svn}` of shape {bold_input.shape}")
if bold_input.shape[1] >= self.boldModel.samplingRate_NDt:
# only if the length of the output has a zero mod to the sampling rate,
# the downsampled output from the boldModel can correctly appended to previous data
# so: we are lazy here and simply disable appending in that case ...
if not bold_input.shape[1] % self.boldModel.samplingRate_NDt == 0:
append = False
logging.warn(
f"Output size {bold_input.shape[1]} is not a multiple of BOLD sampling length { self.boldModel.samplingRate_NDt}, will not append data."
)
logging.debug(f"Simulating BOLD: boldModel.run(append={append})")

# transform bold input according to self.boldInputTransform
if self.boldInputTransform:
bold_input = self.boldInputTransform(bold_input)

# simulate bold model
self.boldModel.run(bold_input, append=append)

t_BOLD = self.boldModel.t_BOLD
BOLD = self.boldModel.BOLD
self.setOutput("BOLD.t_BOLD", t_BOLD)
self.setOutput("BOLD.BOLD", BOLD)
else:
logging.warn(
f"Will not simulate BOLD if output {bold_input.shape[1]*self.params['dt']} not at least of duration {self.boldModel.samplingRate_NDt*self.params['dt']}"
)
else:
if not self.boldInitialized:
logging.warn("BOLD model not initialized, not simulating BOLD. Use `run(bold=True)`")
return

bold_input = bold_variable[:, self.startindt :]
# logging.debug(f"BOLD input `{svn}` of shape {bold_input.shape}")
if not bold_input.shape[1] >= self.boldModel.samplingRate_NDt:
logging.warn(
f"Will not simulate BOLD if output {bold_input.shape[1]*self.params['dt']} not at least of duration {self.boldModel.samplingRate_NDt*self.params['dt']}"
)
return

# only if the length of the output has a zero mod to the sampling rate,
# the downsampled output from the boldModel can correctly appended to previous data
# so: we are lazy here and simply disable appending in that case ...
if append and not bold_input.shape[1] % self.boldModel.samplingRate_NDt == 0:
append = False
logging.warn(
f"Output size {bold_input.shape[1]} is not a multiple of BOLD sampling length { self.boldModel.samplingRate_NDt}, will not append data."
)
logging.debug(f"Simulating BOLD: boldModel.run()")

# transform bold input according to self.boldInputTransform
if self.boldInputTransform:
bold_input = self.boldInputTransform(bold_input)

# simulate bold model
self.boldModel.run(bold_input)

t_BOLD = self.boldModel.t_BOLD
BOLD = self.boldModel.BOLD
self.setOutput("BOLD.t_BOLD", t_BOLD, append=append)
self.setOutput("BOLD.BOLD", BOLD, append=append)

def checkChunkwise(self, chunksize):
"""Checks if the model fulfills requirements for chunkwise simulation.
Expand Down Expand Up @@ -172,21 +174,16 @@ def initializeRun(self, initializeBold=False):
# check dt / sampling_dt
self.setSamplingDt()

# force bold if params['bold'] == True
if self.params.get("bold"):
initializeBold = True
# set up the bold model, if it didn't happen yet
if initializeBold and not self.boldInitialized:
self.initializeBold()

def run(
self,
inputs=None,
chunkwise=False,
chunksize=None,
bold=False,
append=False,
append_outputs=None,
append_outputs=False,
continue_run=False,
):
"""
Expand All @@ -195,7 +192,7 @@ def run(
The model can be run in three different ways:
1) `model.run()` starts a new run.
2) `model.run(chunkwise=True)` runs the simulation in chunks of length `chunksize`.
3) `mode.run(continue_run=True)` continues the simulation of a previous run.
3) `mode.run(continue_run=True)` continues the simulation of a previous run. This has no effect during the first run.

:param inputs: list of inputs to the model, must have the same order as model.input_vars. Note: no sanity check is performed for performance reasons. Take care of the inputs yourself.
:type inputs: list[np.ndarray|]
Expand All @@ -205,28 +202,24 @@ def run(
:type chunksize: int, optional
:param bold: simulate BOLD signal (only for chunkwise integration), defaults to False
:type bold: bool, optional
:param append: append the chunkwise outputs to the outputs attribute, defaults to False, defaults to False
:type append: bool, optional
:param continue_run: continue a simulation by using the initial values from a previous simulation
:param append_outputs: append new and chunkwise outputs to the outputs attribute, defaults to False. Note: BOLD outputs are always appended.
:type append_outputs: bool, optional
:param continue_run: continue a simulation by using the initial values from a previous simulation. This has no effect during the first run.
:type continue_run: bool
"""
# TODO: legacy argument support
if append_outputs is not None:
append = append_outputs
self.initializeRun(initializeBold=bold)

# if a previous run is not to be continued clear the model's state
if continue_run is False:
if continue_run:
self.setInitialValuesToLastState()
else:
self.clearModelState()

self.initializeRun(initializeBold=bold)

# enable chunkwise if chunksize is set
chunkwise = chunkwise if chunksize is None else True

if chunkwise is False:
self.integrate(append_outputs=append, simulate_bold=bold)
if continue_run:
self.setInitialValuesToLastState()
self.integrate(append_outputs=append_outputs, simulate_bold=bold)

else:
if chunksize is None:
Expand All @@ -235,10 +228,8 @@ def run(
# check if model is safe for chunkwise integration
# and whether sampling_dt is compatible with duration and chunksize
self.checkChunkwise(chunksize)
if bold and not self.boldInitialized:
logging.warn(f"{self.name}: BOLD model not initialized, not simulating BOLD. Use `run(bold=True)`")
bold = False
self.integrateChunkwise(chunksize=chunksize, bold=bold, append_outputs=append)

self.integrateChunkwise(chunksize=chunksize, bold=bold, append_outputs=append_outputs)

# check if there was a problem with the simulated data
self.checkOutputs()
Expand All @@ -260,20 +251,17 @@ def checkOutputs(self):
def integrate(self, append_outputs=False, simulate_bold=False):
"""Calls each models `integration` function and saves the state and the outputs of the model.

:param append: append the chunkwise outputs to the outputs attribute, defaults to False, defaults to False
:param append: append the chunkwise outputs to the outputs attribute, defaults to False
:type append: bool, optional
"""
# run integration
t, *variables = self.integration(self.params)
self.storeOutputsAndStates(t, variables, append=append_outputs)

# force bold if params['bold'] == True
if self.params.get("bold"):
simulate_bold = True

# bold simulation after integration
if simulate_bold and self.boldInitialized:
self.simulateBold(t, variables, append=True)
bold_variable = self.get_bold_variable(variables)
self.simulateBold(bold_variable, append=True)

def integrateChunkwise(self, chunksize, bold=False, append_outputs=False):
"""Repeatedly calls the chunkwise integration for the whole duration of the simulation.
Expand Down Expand Up @@ -311,7 +299,7 @@ def clearModelState(self):
self.state = dotdict({})
self.outputs = dotdict({})
# reinitialize bold model
if self.params.get("bold"):
if self.boldInitialized:
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Does this do the same thing as before? Reads like: if it is initialized, initialize it.

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The difference is that BOLD is now only initialized at the beginning of the first run. One only needs to clear the bold state with re-initialization if it has been initialized before.

self.initializeBold()

def storeOutputsAndStates(self, t, variables, append=False):
Expand All @@ -335,6 +323,11 @@ def storeOutputsAndStates(self, t, variables, append=False):

def setInitialValuesToLastState(self):
"""Reads the last state of the model and sets the initial conditions to that state for continuing a simulation."""
if not all([sv in self.state for sv in self.state_vars]):
logging.warning(
f"`setInitialValuesToLastState` was called, but the state dict is incomplete. This is probably caused by `continue_run=True` on the first model run."
)
return
for iv, sv in zip(self.init_vars, self.state_vars):
# if state variables are one-dimensional (in space only)
if (self.state[sv].ndim == 0) or (self.state[sv].ndim == 1):
Expand Down Expand Up @@ -474,25 +467,28 @@ def setOutput(self, name, data, append=False, removeICs=False):
raise ValueError(f"Don't know how to truncate data of shape {data.shape}.")

# subsample to sampling dt
if data.ndim == 1:
data = data[:: self.sample_every]
elif data.ndim == 2:
data = data[:, :: self.sample_every]
else:
raise ValueError(f"Don't know how to subsample data of shape {data.shape}.")
if data.shape[-1] >= self.params["duration"] - self.startindt:
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Does this if clause prevent any previous case to run?

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This catches unintended subsampling of BOLD.

if data.ndim == 1:
data = data[:: self.sample_every]
elif data.ndim == 2:
data = data[:, :: self.sample_every]
else:
raise ValueError(f"Don't know how to subsample data of shape {data.shape}.")

def save_leaf(node, name, data, append):
if name in node:
if data.ndim == 1 and name == "t":
# special treatment for time data:
# increment the time by the last recorded duration
data += node[name][-1]
if append and data.shape[-1] != 0:
data = np.hstack((node[name], data))
node[name] = data
return node

# if the output is a single name (not dot.separated)
if "." not in name:
# append data
if append and name in self.outputs:
# special treatment for time data:
# increment the time by the last recorded duration
if name == "t":
data += self.outputs[name][-1]
self.outputs[name] = np.hstack((self.outputs[name], data))
else:
# save all data into output dict
self.outputs[name] = data
save_leaf(self.outputs, name, data, append)
# set output as an attribute
setattr(self, name, self.outputs[name])
else:
Expand All @@ -503,18 +499,10 @@ def setOutput(self, name, data, append=False, removeICs=False):
for i, k in enumerate(keys):
# if it's the last iteration, store data
if i == len(keys) - 1:
# TODO: this needs to be append-aware like above
# if append:
# if k == "t":
# data += level[k][-1]
# level[k] = np.hstack((level[k], data))
# else:
# level[k] = data
level[k] = data
level = save_leaf(level, k, data, append)
# if key is in outputs, then go deeper
elif k in level:
level = level[k]
setattr(self, k, level)
# if it's a new key, create new nested dictionary, set attribute, then go deeper
else:
level[k] = dotdict({})
Expand Down Expand Up @@ -604,11 +592,9 @@ def xr(self, group=""):
assert len(timeDictKey) > 0, f"No time array found (starting with t) in output group {group}."
t = outputDict[timeDictKey].copy()
del outputDict[timeDictKey]
outputs = []
outputNames = []
for key, value in outputDict.items():
outputNames.append(key)
outputs.append(value)

outputNames, outputs = zip(*outputDict.items())
outputNames = list(outputNames)

nNodes = outputs[0].shape[0]
nodes = list(range(nNodes))
Expand Down
Loading
Loading