Code Release zum Vortrag "Automatische Transkription von Podcastfolgen für Korpuslinguistische Untersuchungen."
Slides: https://zenodo.org/doi/10.5281/zenodo.12584114
- Veronika Sahlbach (https://tu-dresden.de/gsw/slk/germanistik/gls/die-professur/team-1/veronika-sahlbach)
- Vasco Alexander Sahlbach @notaTeapot
Skripte für die Whisper Automatisierung auf HPC-Sytemen: https://github.com/notaTeapot/whisper-hpc-automation
Whisper Annotation Tools (WAT) is a set of utilities transforming whisper ASR and pyannote.speaker-diarization into transcript formats ready for further linguistic analysis.
Currently supporting:
- insanely-fast-whisper json format as input (https://github.com/Vaibhavs10/insanely-fast-whisper)
- structured output as xml or json for usage with corpus building tools (e.g. sketchengine)
- .lfk output to use with FOLKeR (https://github.com/Exmaralda-Org/exmaralda)
pip install git+https://github.com/notaTeapot/whisper-annotation-tools.git
usage: whisper-annotation-tools.exe [-h] --file-name FILE_NAME --output-name OUTPUT_NAME [--prepend-time PREPEND_TIME] [--metadata-file METADATA_FILE] [--audio-file AUDIO_FILE]
Whisper Annotation Tools
options:
-h, --help show this help message and exit
--file-name FILE_NAME
Path to the whisper output json
--output-name OUTPUT_NAME
Path to the desired output file, Mode defined by file extension (.flk-->FOLKER Compatible, .xml-->Corpus Tools, .json)
--prepend-time PREPEND_TIME
cut off time from beginning of whisper output
--metadata-file METADATA_FILE
Path to json file containing episode.
--audio-file AUDIO_FILE
Path to episode audio file, used for .flk.