-
Notifications
You must be signed in to change notification settings - Fork 2.6k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Add theory of mind eval #1405
Merged
Merged
Add theory of mind eval #1405
Conversation
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
inwaves
requested review from
andrew-openai,
jwang47 and
logankilpatrick
as code owners
November 10, 2023 14:24
inwaves
force-pushed
the
feature/theory_of_mind
branch
from
November 14, 2023 10:03
82e6aa8
to
eb49d08
Compare
inwaves
force-pushed
the
feature/theory_of_mind
branch
from
November 14, 2023 10:05
eb49d08
to
0cf8f00
Compare
andrew-openai
approved these changes
Nov 15, 2023
JunShern
pushed a commit
that referenced
this pull request
Jan 9, 2024
In [the previous PR](#1405) adding the Theory of Mind eval, the `evals/registry/evals/theory_of_mind.yaml` was mistakenly not added, so the eval couldn't be run. This PR adds this file. Test with: ``` oaieval gpt-3.5-turbo theory_of_mind ```
GauravRanganath
pushed a commit
to withmartian/-ARCHIVED--router-evals
that referenced
this pull request
Jan 9, 2024
In [the previous PR](openai#1405) adding the Theory of Mind eval, the `evals/registry/evals/theory_of_mind.yaml` was mistakenly not added, so the eval couldn't be run. This PR adds this file. Test with: ``` oaieval gpt-3.5-turbo theory_of_mind ```
jacobbieker
pushed a commit
to withmartian/-ARCHIVED--router-evals
that referenced
this pull request
Jan 9, 2024
# Thank you for contributing an eval!♥️ 🚨 Please make sure your PR follows these guidelines, **failure to follow the guidelines below will result in the PR being closed automatically**. Note that even if the criteria are met, that does not guarantee the PR will be merged nor GPT-4 access be granted. 🚨 **PLEASE READ THIS**: In order for a PR to be merged, it must fail on GPT-4. We are aware that right now, users do not have access, so you will not be able to tell if the eval fails or not. Please run your eval with GPT-3.5-Turbo, but keep in mind as we run the eval, if GPT-4 gets higher than 90% on the eval, we will likely reject it since GPT-4 is already capable of completing the task. We plan to roll out a way for users submitting evals to see the eval performance on GPT-4 soon. Stay tuned! Until then, you will not be able to see the eval performance on GPT-4. **Starting April 10, the minimum eval count is 15 samples, we hope this makes it easier to create and contribute evals.** Also, please note that we're using **Git LFS** for storing the JSON files, so please make sure that you move the JSON file to Git LFS before submitting a PR. Details on how to use Git LFS are available [here](https://git-lfs.com). ## Eval details 📑 ### Eval name Theory of mind. ### Eval description The `ToMi` test set contains 5,993 question-answer pairs. These are instances of the [Sally-Anne test](https://en.wikipedia.org/wiki/Sally%E2%80%93Anne_test), which assesses the ability of a person to infer false beliefs in others. The original setting involves two people, Sally and Anne, who are together in a room. Sally places a marble in a box. Then, Anne leaves the room, and while she is away, Sally moves the marble to a basket elsewhere in the room. When Anne returns to the room, where will she search for the marble? If the person responding “has” theory-of-mind they’ll respond that Anne searches for the marble in the box, where she had last seen it. If they do not, they ascribe their own, accurate belief regarding the location to Anne, and say that she looks for it in the basket. The `SocialIQA` test set contains 2,224 question-answer pairs covering a variety of social scenarios. These are multiple-choice, with 3 options of which only one is correct. The questions cover a person’s wants, needs, motivations, and reactions, as well as the effects of an action (on self or others), and how that action reflects on the person carrying it out (e.g. how others would perceive them after having carried out the action). Two "light" versions of the datasets are also provided, containing 1/10th of the data points. These are useful for iterating on prompts and developing other scaffolding. ### What makes this a useful eval? Measures theory of mind capability in language models. ## Criteria for a good eval ✅ Below are some of the criteria we look for in a good eval. In general, we are seeking cases where the model does not do a good job despite being capable of generating a good response (note that there are some things large language models cannot do, so those would not make good evals). Your eval should be: - [x] Thematically consistent: The eval should be thematically consistent. We'd like to see a number of prompts all demonstrating some particular failure mode. For example, we can create an eval on cases where the model fails to reason about the physical world. - [x] Contains failures where a human can do the task, but either GPT-4 or GPT-3.5-Turbo could not. - [x] Includes good signal around what is the right behavior. This means either a correct answer for `Basic` evals or the `Fact` Model-graded eval, or an exhaustive rubric for evaluating answers for the `Criteria` Model-graded eval. - [x] **Include at least 15 high-quality examples.** If there is anything else that makes your eval worth including, please document it below. ### Unique eval value > Insert what makes your eval high quality that was not mentioned above. (Not required) ## Eval structure 🏗️ Your eval should - [x] Check that your data is in `evals/registry/data/{name}` - [x] Check that your YAML is registered at `evals/registry/evals/{name}.yaml` - [x] Ensure you have the right to use the data you submit via this eval (For now, we will only be approving evals that use one of the existing eval classes. You may still write custom eval classes for your own cases, and we may consider merging them in the future.) ## Final checklist 👀 ### Submission agreement By contributing to Evals, you are agreeing to make your evaluation logic and data under the same MIT license as this repository. You must have adequate rights to upload any data used in an Eval. OpenAI reserves the right to use this data in future service improvements to our product. Contributions to OpenAI Evals will be subject to our usual Usage Policies (<https://platform.openai.com/docs/usage-policies>). - [x] I agree that my submission will be made available under an MIT license and complies with OpenAI's usage policies. ### Email address validation If your submission is accepted, we will be granting GPT-4 access to a limited number of contributors. Access will be given to the email address associated with the commits on the merged pull request. - [x] I acknowledge that GPT-4 access will only be granted, if applicable, to the email address used for my merged pull request. ### Limited availability acknowledgment We know that you might be excited to contribute to OpenAI's mission, help improve our models, and gain access to GPT-4. However, due to the requirements mentioned above and the high volume of submissions, we will not be able to accept all submissions and thus not grant everyone who opens a PR GPT-4 access. We know this is disappointing, but we hope to set the right expectation before you open this PR. - [x] I understand that opening a PR, even if it meets the requirements above, does not guarantee the PR will be merged nor GPT-4 access be granted. ### Submit eval - [x] I have filled out all required fields of this form - [x] I have used **Git LFS** for the Eval JSON data - [x] (Ignore if not submitting code) I have run `pip install pre-commit; pre-commit install` and have verified that `mypy`, `black`, `isort`, `autoflake` and `ruff` are running when I commit and push Failure to fill out all required fields will result in the PR being closed. ### Eval JSON data Since we are using Git LFS, we are asking eval submitters to add in as many Eval Samples (at least 5) from their contribution here: <details> <summary>View evals in JSON</summary> ### Eval ```jsonl {"input": [{"role": "user", "content": "Jackson entered the hall. Chloe entered the hall. The boots is in the bathtub. Jackson exited the hall. Jackson entered the dining_room. Chloe moved the boots to the pantry. Where does Chloe think that Jackson searches for the boots?"}], "ideal": "bathtub"} ``` </details>
Linmj-Judy
pushed a commit
to TablewareBox/evals
that referenced
this pull request
Feb 27, 2024
# Thank you for contributing an eval!♥️ 🚨 Please make sure your PR follows these guidelines, **failure to follow the guidelines below will result in the PR being closed automatically**. Note that even if the criteria are met, that does not guarantee the PR will be merged nor GPT-4 access be granted. 🚨 **PLEASE READ THIS**: In order for a PR to be merged, it must fail on GPT-4. We are aware that right now, users do not have access, so you will not be able to tell if the eval fails or not. Please run your eval with GPT-3.5-Turbo, but keep in mind as we run the eval, if GPT-4 gets higher than 90% on the eval, we will likely reject it since GPT-4 is already capable of completing the task. We plan to roll out a way for users submitting evals to see the eval performance on GPT-4 soon. Stay tuned! Until then, you will not be able to see the eval performance on GPT-4. **Starting April 10, the minimum eval count is 15 samples, we hope this makes it easier to create and contribute evals.** Also, please note that we're using **Git LFS** for storing the JSON files, so please make sure that you move the JSON file to Git LFS before submitting a PR. Details on how to use Git LFS are available [here](https://git-lfs.com). ## Eval details 📑 ### Eval name Theory of mind. ### Eval description The `ToMi` test set contains 5,993 question-answer pairs. These are instances of the [Sally-Anne test](https://en.wikipedia.org/wiki/Sally%E2%80%93Anne_test), which assesses the ability of a person to infer false beliefs in others. The original setting involves two people, Sally and Anne, who are together in a room. Sally places a marble in a box. Then, Anne leaves the room, and while she is away, Sally moves the marble to a basket elsewhere in the room. When Anne returns to the room, where will she search for the marble? If the person responding “has” theory-of-mind they’ll respond that Anne searches for the marble in the box, where she had last seen it. If they do not, they ascribe their own, accurate belief regarding the location to Anne, and say that she looks for it in the basket. The `SocialIQA` test set contains 2,224 question-answer pairs covering a variety of social scenarios. These are multiple-choice, with 3 options of which only one is correct. The questions cover a person’s wants, needs, motivations, and reactions, as well as the effects of an action (on self or others), and how that action reflects on the person carrying it out (e.g. how others would perceive them after having carried out the action). Two "light" versions of the datasets are also provided, containing 1/10th of the data points. These are useful for iterating on prompts and developing other scaffolding. ### What makes this a useful eval? Measures theory of mind capability in language models. ## Criteria for a good eval ✅ Below are some of the criteria we look for in a good eval. In general, we are seeking cases where the model does not do a good job despite being capable of generating a good response (note that there are some things large language models cannot do, so those would not make good evals). Your eval should be: - [x] Thematically consistent: The eval should be thematically consistent. We'd like to see a number of prompts all demonstrating some particular failure mode. For example, we can create an eval on cases where the model fails to reason about the physical world. - [x] Contains failures where a human can do the task, but either GPT-4 or GPT-3.5-Turbo could not. - [x] Includes good signal around what is the right behavior. This means either a correct answer for `Basic` evals or the `Fact` Model-graded eval, or an exhaustive rubric for evaluating answers for the `Criteria` Model-graded eval. - [x] **Include at least 15 high-quality examples.** If there is anything else that makes your eval worth including, please document it below. ### Unique eval value > Insert what makes your eval high quality that was not mentioned above. (Not required) ## Eval structure 🏗️ Your eval should - [x] Check that your data is in `evals/registry/data/{name}` - [x] Check that your YAML is registered at `evals/registry/evals/{name}.yaml` - [x] Ensure you have the right to use the data you submit via this eval (For now, we will only be approving evals that use one of the existing eval classes. You may still write custom eval classes for your own cases, and we may consider merging them in the future.) ## Final checklist 👀 ### Submission agreement By contributing to Evals, you are agreeing to make your evaluation logic and data under the same MIT license as this repository. You must have adequate rights to upload any data used in an Eval. OpenAI reserves the right to use this data in future service improvements to our product. Contributions to OpenAI Evals will be subject to our usual Usage Policies (<https://platform.openai.com/docs/usage-policies>). - [x] I agree that my submission will be made available under an MIT license and complies with OpenAI's usage policies. ### Email address validation If your submission is accepted, we will be granting GPT-4 access to a limited number of contributors. Access will be given to the email address associated with the commits on the merged pull request. - [x] I acknowledge that GPT-4 access will only be granted, if applicable, to the email address used for my merged pull request. ### Limited availability acknowledgment We know that you might be excited to contribute to OpenAI's mission, help improve our models, and gain access to GPT-4. However, due to the requirements mentioned above and the high volume of submissions, we will not be able to accept all submissions and thus not grant everyone who opens a PR GPT-4 access. We know this is disappointing, but we hope to set the right expectation before you open this PR. - [x] I understand that opening a PR, even if it meets the requirements above, does not guarantee the PR will be merged nor GPT-4 access be granted. ### Submit eval - [x] I have filled out all required fields of this form - [x] I have used **Git LFS** for the Eval JSON data - [x] (Ignore if not submitting code) I have run `pip install pre-commit; pre-commit install` and have verified that `mypy`, `black`, `isort`, `autoflake` and `ruff` are running when I commit and push Failure to fill out all required fields will result in the PR being closed. ### Eval JSON data Since we are using Git LFS, we are asking eval submitters to add in as many Eval Samples (at least 5) from their contribution here: <details> <summary>View evals in JSON</summary> ### Eval ```jsonl {"input": [{"role": "user", "content": "Jackson entered the hall. Chloe entered the hall. The boots is in the bathtub. Jackson exited the hall. Jackson entered the dining_room. Chloe moved the boots to the pantry. Where does Chloe think that Jackson searches for the boots?"}], "ideal": "bathtub"} ``` </details>
Linmj-Judy
pushed a commit
to TablewareBox/evals
that referenced
this pull request
Feb 27, 2024
In [the previous PR](openai#1405) adding the Theory of Mind eval, the `evals/registry/evals/theory_of_mind.yaml` was mistakenly not added, so the eval couldn't be run. This PR adds this file. Test with: ``` oaieval gpt-3.5-turbo theory_of_mind ```
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Thank you for contributing an eval!♥️
🚨 Please make sure your PR follows these guidelines, failure to follow the guidelines below will result in the PR being closed automatically. Note that even if the criteria are met, that does not guarantee the PR will be merged nor GPT-4 access be granted. 🚨
PLEASE READ THIS:
In order for a PR to be merged, it must fail on GPT-4. We are aware that right now, users do not have access, so you will not be able to tell if the eval fails or not. Please run your eval with GPT-3.5-Turbo, but keep in mind as we run the eval, if GPT-4 gets higher than 90% on the eval, we will likely reject it since GPT-4 is already capable of completing the task.
We plan to roll out a way for users submitting evals to see the eval performance on GPT-4 soon. Stay tuned! Until then, you will not be able to see the eval performance on GPT-4. Starting April 10, the minimum eval count is 15 samples, we hope this makes it easier to create and contribute evals.
Also, please note that we're using Git LFS for storing the JSON files, so please make sure that you move the JSON file to Git LFS before submitting a PR. Details on how to use Git LFS are available here.
Eval details 📑
Eval name
Theory of mind.
Eval description
The
ToMi
test set contains 5,993 question-answer pairs. These are instances of the Sally-Anne test, which assesses the ability of a person to infer false beliefs in others. The original setting involves two people, Sally and Anne, who are together in a room. Sally places a marble in a box. Then, Anne leaves the room, and while she is away, Sally moves the marble to a basket elsewhere in the room. When Anne returns to the room, where will she search for the marble? If the person responding “has” theory-of-mind they’ll respond that Anne searches for the marble in the box, where she had last seen it. If they do not, they ascribe their own, accurate belief regarding the location to Anne, and say that she looks for it in the basket.The
SocialIQA
test set contains 2,224 question-answer pairs covering a variety of social scenarios. These are multiple-choice, with 3 options of which only one is correct. The questions cover a person’s wants, needs, motivations, and reactions, as well as the effects of an action (on self or others), and how that action reflects on the person carrying it out (e.g. how others would perceive them after having carried out the action).Two "light" versions of the datasets are also provided, containing 1/10th of the data points. These are useful for iterating on prompts and developing other scaffolding.
What makes this a useful eval?
Measures theory of mind capability in language models.
Criteria for a good eval ✅
Below are some of the criteria we look for in a good eval. In general, we are seeking cases where the model does not do a good job despite being capable of generating a good response (note that there are some things large language models cannot do, so those would not make good evals).
Your eval should be:
Basic
evals or theFact
Model-graded eval, or an exhaustive rubric for evaluating answers for theCriteria
Model-graded eval.If there is anything else that makes your eval worth including, please document it below.
Unique eval value
Eval structure 🏗️
Your eval should
evals/registry/data/{name}
evals/registry/evals/{name}.yaml
(For now, we will only be approving evals that use one of the existing eval classes. You may still write custom eval classes for your own cases, and we may consider merging them in the future.)
Final checklist 👀
Submission agreement
By contributing to Evals, you are agreeing to make your evaluation logic and data under the same MIT license as this repository. You must have adequate rights to upload any data used in an Eval. OpenAI reserves the right to use this data in future service improvements to our product. Contributions to OpenAI Evals will be subject to our usual Usage Policies (https://platform.openai.com/docs/usage-policies).
Email address validation
If your submission is accepted, we will be granting GPT-4 access to a limited number of contributors. Access will be given to the email address associated with the commits on the merged pull request.
Limited availability acknowledgment
We know that you might be excited to contribute to OpenAI's mission, help improve our models, and gain access to GPT-4. However, due to the requirements mentioned above and the high volume of submissions, we will not be able to accept all submissions and thus not grant everyone who opens a PR GPT-4 access. We know this is disappointing, but we hope to set the right expectation before you open this PR.
Submit eval
pip install pre-commit; pre-commit install
and have verified thatmypy
,black
,isort
,autoflake
andruff
are running when I commit and pushFailure to fill out all required fields will result in the PR being closed.
Eval JSON data
Since we are using Git LFS, we are asking eval submitters to add in as many Eval Samples (at least 5) from their contribution here:
View evals in JSON
Eval