Skip to content

rahulvaish/MachineLearning-Python

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

65 Commits
 
 

Repository files navigation

This repository contains Machine Learning Concepts/Analysis and Algorithms examples.

Table of Contents


  • This example is analysis on Titanic Dataset. [source Code]
    • Load the data[titanic.csv]
    • Clean and Prepare Data
    • Create Sparse Matrix
    • Split Dataframe as: image Representation of Split:
      image
    • Apply ML Model
    • Make Prediction
    • Cross Validate image
    • Make Predictions

  • This example is analysis on IRIS Dataset. [source Code]
    • Load the data[iris.csv]
    • Clean and Prepare Data
    • Split Dataframe as above for Pictorial representation
    • Apply ML Model
    • Make Prediction
    • Cross Validate
    • Make Predictions

  • This example is analysis on House Price Dataset.[Source Code]
    • Load the data[HousePricingTutorial.csv]
    • Normalize
    • Analyse Correlation
    • Clean and Prepare Data
    • Split Dataframe as above for Pictorial representation
    • Apply ML Model
    • Make Prediction
    • Cross Validate Refer above for Pictorial representation
    • Make Predictions

  • This example explains basic computing options with Pandas Dataframe/Series [Source Code]
    • Load the data[Loan.csv]
    • Undersatnding Types
    • Column Operations
    • Row Operations

  • This example explains how we can access data present on Cloud(Azure Cloud Storage). [Source Code]
    • Storing Data on Cloud (Azure Cloud Storage).
    • Accessing the Data using Pandas Library.

  • This example explains various methods of consolidating Data. [Source Code]
    • Concatinating Dataframe
    • Appending Dataframe
    • Joining Dataframe
    • Merging Dataframe

  • This example explains how to do Data Profiling using pandas-profiling library. [Source Code]
    • Load the Data [iris.csv]
    • Apply profiling
    • Save the ouput in html


  • This example explains the concept of Pivot Tables and GroupBy. [Source Code]
    • Load the data[schools_with_btoilet.csv/schools_with_gtoilet.csv]
    • Apply Panda's Pivot Method
      image

  • This example explains how to Visualize data in various forms of Graphs. [Source Code]
    • Pair Plot
    • Line Graph
    • Histo Graph
    • Bar Plot
    • Scatter Plots
    • Box Plots
    • Heat Maps

  • This example explains common methods used for Feature Engineering. [Source Code]
    • Load the data[mercedesbenz.csv]
    • Nominal Encoding (One-Hot Normal | One-Hot KDD | Count/Frequncy)
    • Ordinal Encoding (System | Custom)

  • This example explains Concepts like Confusion Matrix | Accuracy | Precision | Recall | F1-Score. [Source Code]
    • Understanding Confusion Matrix
    • Understanding Accuracy
    • Understanding Precision
    • Understanding Recall
    • Understanding F1-Score image

  • This Sheet explains the concept of Bias-Variance TradeOff.

  • This Sheet explains the concept of Curse Of Dimentionality.

  • This example explains Decison Trees' theory with an implementation in Python. [Source Code]
    • Load the data[IRIS.csv]
    • Decision Trees Classification using GINI Index
    • Decision Trees Classification using Information Gain
    • Visualizing Decision Trees
    • Decision Trees Regression

  • This example explains Decison Trees' basic theory with an implementation in Python. [Source Code]
    • Load the data[IRIS.csv]
    • Computing SVM
      image

  • This example explains K-Means Clustering basic theory with an implementation in Python. [Source Code]
    • Load the data[IRIS.csv]
    • Computing K-Means Clustering
    • Determining K - Elbow Method | Silhouette Method
    • Mini-Batch K-Means
      image

  • This example explains FP-Growth basic theory with an implementation in Python. [Source Code]
    • Install pyfpgrowth [pip install pyfpgrowth]
    • Prepare Dummy Data
    • Computing FP-Growth

  • This example explains Gaussian Naive Bayes basic theory with an implementation in Python. [Source Code]
    • Load the data[IRIS.csv]
    • Computing Gaussian Naive Bayes using scikit-learn
    • Computing Gaussian Naive Bayes by logic

  • This example explains Simple Linear Regression's basic theory with an implementation in Python. [Source Code]
    • Load the data[SimpleLinearRegression.csv]
    • Computing Simple Linear Regression by logic
    • Computing Simple Linear Regression using Scikit-learn
      image

  • This example explains Polynomial Linear Regression's implementation in Python. [Source Code]
    • Load the data[DatasetForSimpleAndPolynomialLinearRegression.csv]
    • Computing Simple Linear Regression using Scikit-learn
    • Computing Polynomial Linear Regression
    • Comparision of different Polynomial Linear Regression graphs based on different degrees. image

  • This example explains KNN Algorithm and its implementation in Python. [Source Code]
    • Load the data[IRIS.csv]
    • Compute KNN
    • Compute KNN on different values of K

  • This example explains concepts of Logistic Regression Algorithm and its implementation in Python. [Source Code]
    • Load the data[IRIS.csv]
    • Compute Logistic Regression