This repository contains Machine Learning Concepts/Analysis and Algorithms examples.
-
This example is analysis on Titanic Dataset. [source Code]
-
This example is analysis on IRIS Dataset. [source Code]
- Load the data[iris.csv]
- Clean and Prepare Data
- Split Dataframe as above for Pictorial representation
- Apply ML Model
- Make Prediction
- Cross Validate
- Make Predictions
-
This example is analysis on House Price Dataset.[Source Code]
-
This example explains basic computing options with Pandas Dataframe/Series [Source Code]
- Load the data[Loan.csv]
- Undersatnding Types
- Column Operations
- Row Operations
-
This example explains how we can access data present on Cloud(Azure Cloud Storage). [Source Code]
- Storing Data on Cloud (Azure Cloud Storage).
- Accessing the Data using Pandas Library.
-
This example explains various methods of consolidating Data. [Source Code]
- Concatinating Dataframe
- Appending Dataframe
- Joining Dataframe
- Merging Dataframe
-
This example explains how to do Data Profiling using pandas-profiling library. [Source Code]
- Load the Data [iris.csv]
- Apply profiling
- Save the ouput in html
-
This example explains the connectivity between MySQL and Pandas. [Source Code]
-
This example explains the concept of Pivot Tables and GroupBy. [Source Code]
-
This example explains how to Visualize data in various forms of Graphs. [Source Code]
- Pair Plot
- Line Graph
- Histo Graph
- Bar Plot
- Scatter Plots
- Box Plots
- Heat Maps
-
This example explains common methods used for Feature Engineering. [Source Code]
- Load the data[mercedesbenz.csv]
- Nominal Encoding (One-Hot Normal | One-Hot KDD | Count/Frequncy)
- Ordinal Encoding (System | Custom)
-
This example explains Concepts like Confusion Matrix | Accuracy | Precision | Recall | F1-Score. [Source Code]
- Understanding Confusion Matrix
- Understanding Accuracy
- Understanding Precision
- Understanding Recall
- Understanding F1-Score
-
This Sheet explains the concept of Bias-Variance TradeOff.
-
This Sheet explains the concept of Curse Of Dimentionality.
-
This example explains Decison Trees' theory with an implementation in Python. [Source Code]
- Load the data[IRIS.csv]
- Decision Trees Classification using GINI Index
- Decision Trees Classification using Information Gain
- Visualizing Decision Trees
- Decision Trees Regression
-
This example explains Decison Trees' basic theory with an implementation in Python. [Source Code]
-
This example explains K-Means Clustering basic theory with an implementation in Python. [Source Code]
- Load the data[IRIS.csv]
- Computing K-Means Clustering
- Determining K - Elbow Method | Silhouette Method
- Mini-Batch K-Means
- Load the data[IRIS.csv]
-
This example explains FP-Growth basic theory with an implementation in Python. [Source Code]
- Install pyfpgrowth [pip install pyfpgrowth]
- Prepare Dummy Data
- Computing FP-Growth
- Install pyfpgrowth [pip install pyfpgrowth]
-
This example explains Gaussian Naive Bayes basic theory with an implementation in Python. [Source Code]
- Load the data[IRIS.csv]
- Computing Gaussian Naive Bayes using scikit-learn
- Computing Gaussian Naive Bayes by logic
- Load the data[IRIS.csv]
-
This example explains Simple Linear Regression's basic theory with an implementation in Python. [Source Code]
- Load the data[SimpleLinearRegression.csv]
- Computing Simple Linear Regression by logic
- Computing Simple Linear Regression using Scikit-learn
- Load the data[SimpleLinearRegression.csv]
-
This example explains Polynomial Linear Regression's implementation in Python. [Source Code]
- Load the data[DatasetForSimpleAndPolynomialLinearRegression.csv]
- Computing Simple Linear Regression using Scikit-learn
- Computing Polynomial Linear Regression
- Comparision of different Polynomial Linear Regression graphs based on different degrees.
- Load the data[DatasetForSimpleAndPolynomialLinearRegression.csv]
-
This example explains KNN Algorithm and its implementation in Python. [Source Code]
- Load the data[IRIS.csv]
- Compute KNN
- Compute KNN on different values of K
- Load the data[IRIS.csv]
-
This example explains concepts of Logistic Regression Algorithm and its implementation in Python. [Source Code]
- Load the data[IRIS.csv]
- Compute Logistic Regression
- Load the data[IRIS.csv]