Skip to content

Commit

Permalink
Auto-generated commit
Browse files Browse the repository at this point in the history
  • Loading branch information
stdlib-bot committed Jan 6, 2025
1 parent ea3098e commit b2d172f
Show file tree
Hide file tree
Showing 29 changed files with 411 additions and 279 deletions.
20 changes: 16 additions & 4 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -4,15 +4,26 @@
<section class="release" id="unreleased">

## Unreleased (2024-12-27)
## Unreleased (2025-01-06)

<section class="features">

### Features

- [`44cf480`](https://github.com/stdlib-js/stdlib/commit/44cf480b69005e5c5e333fee9b7dd6bbc4059f24) - add C ndarray interface and refactor implementation for `stats/base/dvariancech` [(#4524)](https://github.com/stdlib-js/stdlib/pull/4524)

</section>

<!-- /.features -->

<section class="commits">

### Commits

<details>

- [`02deb59`](https://github.com/stdlib-js/stdlib/commit/02deb592d5c4257ea1b4bd56dabe5973610d5a98) - **refactor:** update `stats/base/dvariancech` native addon from C++ to C [(#4278)](https://github.com/stdlib-js/stdlib/pull/4278) _(by Vivek maurya)_
- [`44cf480`](https://github.com/stdlib-js/stdlib/commit/44cf480b69005e5c5e333fee9b7dd6bbc4059f24) - **feat:** add C ndarray interface and refactor implementation for `stats/base/dvariancech` [(#4524)](https://github.com/stdlib-js/stdlib/pull/4524) _(by Aayush Khanna)_
- [`02deb59`](https://github.com/stdlib-js/stdlib/commit/02deb592d5c4257ea1b4bd56dabe5973610d5a98) - **refactor:** update `stats/base/dvariancech` native addon from C++ to C [(#4278)](https://github.com/stdlib-js/stdlib/pull/4278) _(by Vivek Maurya)_
- [`62364f6`](https://github.com/stdlib-js/stdlib/commit/62364f62ea823a3b52c2ad25660ecd80c71f8f36) - **style:** fix C comment alignment _(by Philipp Burckhardt)_
- [`9e689ff`](https://github.com/stdlib-js/stdlib/commit/9e689ffcb7c6223afc521f1e574b42f10921cf5e) - **chore:** fix indentation in manifest.json files _(by Philipp Burckhardt)_
- [`272ae7a`](https://github.com/stdlib-js/stdlib/commit/272ae7ac5c576c68cfab1b6e304c86407faa20cd) - **docs:** remove comment _(by Athan Reines)_
Expand All @@ -28,11 +39,12 @@

### Contributors

A total of 3 people contributed to this release. Thank you to the following contributors:
A total of 4 people contributed to this release. Thank you to the following contributors:

- Aayush Khanna
- Athan Reines
- Philipp Burckhardt
- Vivek maurya
- Vivek Maurya

</section>

Expand Down
3 changes: 2 additions & 1 deletion CONTRIBUTORS
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,7 @@ Daniel Killenberger <[email protected]>
Daniel Yu <[email protected]>
Debashis Maharana <[email protected]>
Desh Deepak Kant <[email protected]>
Dhruv Arvind Singh <[email protected]>
Divyansh Seth <[email protected]>
Dominic Lim <[email protected]>
Dominik Moritz <[email protected]>
Expand Down Expand Up @@ -117,7 +118,7 @@ UtkershBasnet <[email protected]>
Vaibhav Patel <[email protected]>
Varad Gupta <[email protected]>
Vinit Pandit <[email protected]>
Vivek maurya <[email protected].com>
Vivek Maurya <vm8118134@gmail.com>
Xiaochuan Ye <[email protected]>
Yaswanth Kosuru <[email protected]>
Yernar Yergaziyev <[email protected]>
Expand Down
2 changes: 1 addition & 1 deletion NOTICE
Original file line number Diff line number Diff line change
@@ -1 +1 @@
Copyright (c) 2016-2024 The Stdlib Authors.
Copyright (c) 2016-2025 The Stdlib Authors.
166 changes: 135 additions & 31 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -131,17 +131,16 @@ To view installation and usage instructions specific to each branch build, be su
var dvariancech = require( '@stdlib/stats-base-dvariancech' );
```

#### dvariancech( N, correction, x, stride )
#### dvariancech( N, correction, x, strideX )

Computes the [variance][variance] of a double-precision floating-point strided array `x` using a one-pass trial mean algorithm.

```javascript
var Float64Array = require( '@stdlib/array-float64' );

var x = new Float64Array( [ 1.0, -2.0, 2.0 ] );
var N = x.length;

var v = dvariancech( N, 1, x, 1 );
var v = dvariancech( x.length, 1, x, 1 );
// returns ~4.3333
```

Expand All @@ -150,18 +149,16 @@ The function has the following parameters:
- **N**: number of indexed elements.
- **correction**: degrees of freedom adjustment. Setting this parameter to a value other than `0` has the effect of adjusting the divisor during the calculation of the [variance][variance] according to `N-c` where `c` corresponds to the provided degrees of freedom adjustment. When computing the [variance][variance] of a population, setting this parameter to `0` is the standard choice (i.e., the provided array contains data constituting an entire population). When computing the unbiased sample [variance][variance], setting this parameter to `1` is the standard choice (i.e., the provided array contains data sampled from a larger population; this is commonly referred to as Bessel's correction).
- **x**: input [`Float64Array`][@stdlib/array/float64].
- **stride**: index increment for `x`.
- **strideX**: stride length for `x`.

The `N` and `stride` parameters determine which elements in `x` are accessed at runtime. For example, to compute the [variance][variance] of every other element in `x`,
The `N` and stride parameters determine which elements in the strided array are accessed at runtime. For example, to compute the [variance][variance] of every other element in `x`,

```javascript
var Float64Array = require( '@stdlib/array-float64' );
var floor = require( '@stdlib/math-base-special-floor' );

var x = new Float64Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0 ] );
var N = floor( x.length / 2 );

var v = dvariancech( N, 1, x, 2 );
var v = dvariancech( 4, 1, x, 2 );
// returns 6.25
```

Expand All @@ -171,45 +168,39 @@ Note that indexing is relative to the first index. To introduce an offset, use [

```javascript
var Float64Array = require( '@stdlib/array-float64' );
var floor = require( '@stdlib/math-base-special-floor' );

var x0 = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element

var N = floor( x0.length / 2 );

var v = dvariancech( N, 1, x1, 2 );
var v = dvariancech( 4, 1, x1, 2 );
// returns 6.25
```

#### dvariancech.ndarray( N, correction, x, stride, offset )
#### dvariancech.ndarray( N, correction, x, strideX, offsetX )

Computes the [variance][variance] of a double-precision floating-point strided array using a one-pass trial mean algorithm and alternative indexing semantics.

```javascript
var Float64Array = require( '@stdlib/array-float64' );

var x = new Float64Array( [ 1.0, -2.0, 2.0 ] );
var N = x.length;

var v = dvariancech.ndarray( N, 1, x, 1, 0 );
var v = dvariancech.ndarray( x.length, 1, x, 1, 0 );
// returns ~4.33333
```

The function has the following additional parameters:

- **offset**: starting index for `x`.
- **offsetX**: starting index for `x`.

While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying `buffer`, the `offset` parameter supports indexing semantics based on a starting index. For example, to calculate the [variance][variance] for every other value in `x` starting from the second value
While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying buffer, the offset parameter supports indexing semantics based on a starting index. For example, to calculate the [variance][variance] for every other element in `x` starting from the second element

```javascript
var Float64Array = require( '@stdlib/array-float64' );
var floor = require( '@stdlib/math-base-special-floor' );

var x = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var N = floor( x.length / 2 );

var v = dvariancech.ndarray( N, 1, x, 2, 1 );
var v = dvariancech.ndarray( 4, 1, x, 2, 1 );
// returns 6.25
```

Expand All @@ -236,18 +227,12 @@ var v = dvariancech.ndarray( N, 1, x, 2, 1 );
<!-- eslint no-undef: "error" -->

```javascript
var randu = require( '@stdlib/random-base-randu' );
var round = require( '@stdlib/math-base-special-round' );
var Float64Array = require( '@stdlib/array-float64' );
var discreteUniform = require( '@stdlib/random-array-discrete-uniform' );
var dvariancech = require( '@stdlib/stats-base-dvariancech' );

var x;
var i;

x = new Float64Array( 10 );
for ( i = 0; i < x.length; i++ ) {
x[ i ] = round( (randu()*100.0) - 50.0 );
}
var x = discreteUniform( 10, -50, 50, {
'dtype': 'float64'
});
console.log( x );

var v = dvariancech( x.length, 1, x, 1 );
Expand All @@ -258,6 +243,125 @@ console.log( v );

<!-- /.examples -->

<!-- C interface documentation. -->

* * *

<section class="c">

## C APIs

<!-- Section to include introductory text. Make sure to keep an empty line after the intro `section` element and another before the `/section` close. -->

<section class="intro">

</section>

<!-- /.intro -->

<!-- C usage documentation. -->

<section class="usage">

### Usage

```c
#include "stdlib/stats/base/dvariancech.h"
```

#### stdlib_strided_dvariancech( N, correction, \*X, strideX )

Computes the [variance][variance] of a double-precision floating-point strided array using a one-pass trial mean algorithm.

```c
const double x[] = { 1.0, -2.0, 2.0 };

double v = stdlib_strided_dvariancech( 3, 1.0, x, 1 );
// returns ~4.3333
```
The function accepts the following arguments:
- **N**: `[in] CBLAS_INT` number of indexed elements.
- **correction**: `[in] double` degrees of freedom adjustment. Setting this parameter to a value other than `0` has the effect of adjusting the divisor during the calculation of the [variance][variance] according to `N-c` where `c` corresponds to the provided degrees of freedom adjustment. When computing the [variance][variance] of a population, setting this parameter to `0` is the standard choice (i.e., the provided array contains data constituting an entire population). When computing the unbiased sample [variance][variance], setting this parameter to `1` is the standard choice (i.e., the provided array contains data sampled from a larger population; this is commonly referred to as Bessel's correction).
- **X**: `[in] double*` input array.
- **strideX**: `[in] CBLAS_INT` stride length for `X`.
```c
double stdlib_strided_dvariancech( const CBLAS_INT N, const double correction, const double *X, const CBLAS_INT strideX );
```

#### stdlib_strided_dvariancech_ndarray( N, correction, \*X, strideX, offsetX )

Computes the [variance][variance] of a double-precision floating-point strided array using a one-pass trial mean algorithm and alternative indexing semantics.

```c
const double x[] = { 1.0, -2.0, 2.0 };

double v = stdlib_strided_dvariancech_ndarray( 3, 1.0, x, 1, 0 );
// returns ~4.3333
```
The function accepts the following arguments:
- **N**: `[in] CBLAS_INT` number of indexed elements.
- **correction**: `[in] double` degrees of freedom adjustment. Setting this parameter to a value other than `0` has the effect of adjusting the divisor during the calculation of the [variance][variance] according to `N-c` where `c` corresponds to the provided degrees of freedom adjustment. When computing the [variance][variance] of a population, setting this parameter to `0` is the standard choice (i.e., the provided array contains data constituting an entire population). When computing the unbiased sample [variance][variance], setting this parameter to `1` is the standard choice (i.e., the provided array contains data sampled from a larger population; this is commonly referred to as Bessel's correction).
- **X**: `[in] double*` input array.
- **strideX**: `[in] CBLAS_INT` stride length for `X`.
- **offsetX**: `[in] CBLAS_INT` starting index for `X`.
```c
double stdlib_strided_dvariancech_ndarray( const CBLAS_INT N, const double correction, const double *X, const CBLAS_INT strideX, const CBLAS_INT offsetX );
```

</section>

<!-- /.usage -->

<!-- C API usage notes. Make sure to keep an empty line after the `section` element and another before the `/section` close. -->

<section class="notes">

</section>

<!-- /.notes -->

<!-- C API usage examples. -->

<section class="examples">

### Examples

```c
#include "stdlib/stats/base/dvariancech.h"
#include <stdio.h>

int main( void ) {
// Create a strided array:
const double x[] = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 };

// Specify the number of elements:
const int N = 4;

// Specify the stride length:
const int strideX = 2;

// Compute the variance:
double v = stdlib_strided_dvariancech( N, 1, x, strideX );

// Print the result:
printf( "sample variance: %lf\n", v );
}
```
</section>
<!-- /.examples -->
</section>
<!-- /.c -->
* * *
<section class="references">
Expand Down Expand Up @@ -317,7 +421,7 @@ See [LICENSE][stdlib-license].
## Copyright
Copyright &copy; 2016-2024. The Stdlib [Authors][stdlib-authors].
Copyright &copy; 2016-2025. The Stdlib [Authors][stdlib-authors].
</section>
Expand Down
18 changes: 9 additions & 9 deletions benchmark/benchmark.js
Original file line number Diff line number Diff line change
Expand Up @@ -21,14 +21,20 @@
// MODULES //

var bench = require( '@stdlib/bench-harness' );
var randu = require( '@stdlib/random-base-randu' );
var uniform = require( '@stdlib/random-array-uniform' );
var isnan = require( '@stdlib/math-base-assert-is-nan' );
var pow = require( '@stdlib/math-base-special-pow' );
var Float64Array = require( '@stdlib/array-float64' );
var pkg = require( './../package.json' ).name;
var dvariancech = require( './../lib/dvariancech.js' );


// VARIABLES //

var options = {
'dtype': 'float64'
};


// FUNCTIONS //

/**
Expand All @@ -39,13 +45,7 @@ var dvariancech = require( './../lib/dvariancech.js' );
* @returns {Function} benchmark function
*/
function createBenchmark( len ) {
var x;
var i;

x = new Float64Array( len );
for ( i = 0; i < x.length; i++ ) {
x[ i ] = ( randu()*20.0 ) - 10.0;
}
var x = uniform( len, -10.0, 10.0, options );
return benchmark;

function benchmark( b ) {
Expand Down
14 changes: 5 additions & 9 deletions benchmark/benchmark.native.js
Original file line number Diff line number Diff line change
Expand Up @@ -22,10 +22,9 @@

var resolve = require( 'path' ).resolve;
var bench = require( '@stdlib/bench-harness' );
var randu = require( '@stdlib/random-base-randu' );
var uniform = require( '@stdlib/random-array-uniform' );
var isnan = require( '@stdlib/math-base-assert-is-nan' );
var pow = require( '@stdlib/math-base-special-pow' );
var Float64Array = require( '@stdlib/array-float64' );
var tryRequire = require( '@stdlib/utils-try-require' );
var pkg = require( './../package.json' ).name;

Expand All @@ -36,6 +35,9 @@ var dvariancech = tryRequire( resolve( __dirname, './../lib/dvariancech.native.j
var opts = {
'skip': ( dvariancech instanceof Error )
};
var options = {
'dtype': 'float64'
};


// FUNCTIONS //
Expand All @@ -48,13 +50,7 @@ var opts = {
* @returns {Function} benchmark function
*/
function createBenchmark( len ) {
var x;
var i;

x = new Float64Array( len );
for ( i = 0; i < x.length; i++ ) {
x[ i ] = ( randu()*20.0 ) - 10.0;
}
var x = uniform( len, -10.0, 10.0, options );
return benchmark;

function benchmark( b ) {
Expand Down
Loading

0 comments on commit b2d172f

Please sign in to comment.