Convex optimization framework for Python
- tests, examples, documentation
- scipy's nosetests with np autoimport
- build documentation using Sphinx
- make sure complex numbers are handled correctly
- constraints (proximal mapping is orthogonal projection)
- PositiveIndicatorFunction
- gradient: PositiveIndicatorFunctionGradient
- backward: return np.maximum(x, 0)
- gradient: PositiveIndicatorFunctionGradient
- how can constraints be combined with other functions?
- e.g. ||x||_1 s.t. x >= 0
- PositiveIndicatorFunction
- stacked and reshaped operators
- inspection to find out what methods are implemented
- automatically apply the Moreau decomposition: x = prox_f(x) + prox_f*(x) => x = f.gradient.backward(x) + f.conjugate.gradient.backward(x) => If f.gradient or f.gradient.backward are not implemented, try f.conjugate.gradient.backward instead.
- logging to console using the logging module
- cached sparse decomposition for DataTerm backward operator