Skip to content

Implementation of Generic Algorithm (GABIL) for classification

Notifications You must be signed in to change notification settings

woshahua/gabil-ga

 
 

Repository files navigation

GABIL-GA

Implementation of Genetic Algorithm (GABIL) for classification

Installation

Install project dependencies by running the following command

$ pip install -r requirements.txt

Execution

Execute gabil project by running the following command

$ python main.py <MANDATORY ARGS> <OPTIONAL ARGS>

Below there is a list of the mandatory and optional arguments to be provided respectively:

  • Mandatory Arguments
Argument Short Version Long Version Expected Value
Crossover Rate -c --crossover float number
Mutation Rate -m --mutation float number
Number of Generations -g --generations int number
Population Size -p --population int number
Dataset file Path -d --dataset path to dataset file
  • Optional Arguments
Argument Specification Expected Value Default Value
Length Penalization (Decay) --decay float number 1
Max Rules at Initialization --initrules int number 5
Max number of Rules on each individual --maxrules int number 50
Elitism --elitism true or false False
Parent Selection --pselection roulette or rank or tournament roulette
Results Folder --rfolder path to folder /gabil-runs

In case that any of the optional argument is not specified, its default value will be used instead

####Example of project invocation:

$ python main.py --crossover 0.6 -m 0.01 -g 1000 -p 8 --dataset datasets/crx.data --rfolder my-gabil-results

Note that short argument names and long argument names can be used indifferently

####Results description The following files will be created inside the result folders

  • gabil-learning.txt
  • hypothesis_out.txt
  • input_params.txt
  • test_dataset.txt
  • training_dataset.txt

A description of the content of each file is summarized in the following table

Filename Content Description Format
gabil-learning.txt The progress of the learning process, for each generation comma separated values
hypothesis_out.txt The best hypothesis found and its statistics. Accuracy and Error are computed with respect of both training and test dataset json
input_params.txt A summary of the input parameters provided by the user json
training_dataset.txt The dataset selected for training. Corresponds to 70% of the given dataset json
test_dataset.txt The dataset selected for testing. Corresponds to 30% of the given dataset json

About

Implementation of Generic Algorithm (GABIL) for classification

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.2%
  • Shell 0.8%