Skip to content

homework_06_spheres_v

Kurt Robert Rudolph edited this page Jun 20, 2012 · 16 revisions

Spheres V

A solid metal sphere of radius [a = 2.5 cm] has a net charge [Q_{in} = - 3.0 n C]. The sphere is surrounded by a concentric conducting spherical shell of inner radius [b = 6.0 cm] and outer radius [c = 9.0 cm]. The shell has a net charge [Q_{out} = [+ 2.0 nC]. What is [V_0], the electric potential at the center of the metal sphere, given the potential at infinity is zero?

  • Given

    • [\vec E( r) = -\frac{ d v}{ d r} \hat r ]
    • [ \vec E = k \frac{ Q}{ r^2}]
  • Let

    • [a = 2.5 cm = .025 m]
    • [b = 6.0 cm = .06 m]
    • [c = 9.0 cm = .09 m]
    • [Q_{in} = - 3.0 n C]
    • [Q_{out} = 2 n C]
  • [V = -\left( \int\limits_{\infty}^{c}{ \vec E \cdot d \vec l} \int\limits_{c}^{b}{ \vec E \cdot d \vec l} \int\limits_{b}^{a}{ \vec E \cdot d \vec l} \int\limits_{a}^{0}{ \vec E \cdot d \vec l}\right) ]

  • [V = -\left( \int\limits_{\infty}^{c}{ \vec E \cdot d \vec l} \int\limits_{b}^{a}{ \vec E \cdot d \vec l}\right)]

    • [\int\limits_{c}^{b}{ \vec E \cdot d \vec l} = 0]
    • [\int\limits_{a}^{0}{ \vec E \cdot d \vec l} = 0]
  • [V = -\left( \int\limits_{\infty}^{c}{ k \frac{ Q_{out}}{ r^2} dr} \int\limits_{b}^{a}{ k \frac{ Q_{in}}{ r^2} dr}\right)]

  • Hints

    • [V = kQ/r] cannot be used directly here. We need to start with an expression for [V] which is always true.
      • Despite the spherical symmetery, since we are interested in the potential inside the charge distribution, we cannot use [V = k \frac{ Q}{ r}].
    • Coulomb's law is always true, but the calculation would be difficult for this problem. We can use the spherical symmetry to significantly reduce our work.
    • The spherical symmetry of the problem lets us use the result from Gauss' law. [E = k \frac{ Q_{enclosed}}{ r_2}]
    • Divid the problem in four seperate regions
      • Inside the sphere [r < a]
      • Between the sphere and the shell [a < r < b]
      • Inside the sphereical shell [b < r < c]
      • Outside the spherical shell [r > c]
    • Determine the potential at the origin you need to evaluate
      • [V = -\left( \int\limits_{\infty}^{c}{ \vec E \cdot d \vec l} \int\limits_{c}^{b}{ \vec E \cdot d \vec l} \int\limits_{b}^{a}{ \vec E \cdot d \vec l} \int\limits_{a}^{0}{ \vec E \cdot d \vec l}\right) ]
  • [V_0 =]

Clone this wiki locally