Skip to content
Kurt Robert Rudolph edited this page Jun 13, 2012 · 9 revisions

q02b

  • [F_{ij} = \kappa \frac{ q_i q_j}{ r^2} \hat r]
    • [ \kappa = \frac{ 1}{ 4 \pi \epsilon_0} = 8.99 \times 10^9 \frac{ Nm^2}{ C^2} ]
    • [ \mu = 10^{-6}]
  • Let:
    • [ a ] be the height of the rectangle
    • [ 3a ] be the lenght of the rectangle
    • [ d = \sqrt{ a^2 + (3a)^2 }]
    • [ \theta = \arctan{ \left( \frac{ \frac{ a}{ 2}}{ \frac{ 3a}{ 2}}\right)}]

(a)

  • [ F_Q = \kappa \frac{ q Q}{ \left(\frac{ d}{ 2} \right)^2} ]

(b)

  • [ \sin{ (\theta)} = \frac{ \frac{ a}{ 2}}{ \frac{ d}{ 2}} ]
  • [ \cos{ (\theta)} = \frac{ \frac{ 3a}{ 2}}{ \frac{ d}{ 2}} ]
  • [ \tan{ (\theta)} = \frac{ \frac{ a}{ 2}}{ \frac{ 3a}{ 2}} ]

(c)

  • [ F_{Q,x} = \kappa \frac{ q}{ \frac{ d}{ 2}} \cos{ (\theta)} ]
  • [ F_{Q,y} = \kappa \frac{ q}{ \frac{ d}{ 2}} \sin{ (\theta)} ]

(d)

  • Let:
    • [ q = 3 \mu C ]
    • [ a = .02 m ]
  • Then:
    • [ d = \sqrt{ a^2 + (3a)^2 } = 0.063246]
  • [ F_Q = \kappa \frac{ q}{ \left(\frac{ d}{ 2} \right)^2} = 2.697 \times 10^7 ]

(e)

  • Let:
    • [ q = 3 \mu C ]
    • [ Q = 4 \mu C ]
    • [ a = .02 m ]
  • Then:
    • [ d = \sqrt{ a^2 + (3a)^2 } = 0.063246]
  • [ F_Q = \kappa \frac{ q Q}{ \left(\frac{ d}{ 2} \right)^2} = 107.88 ]
Clone this wiki locally