-
Notifications
You must be signed in to change notification settings - Fork 6
PredatorPrey_step6
So far we have created agents only during the initialization of the simulation. In this sixth step, we illustrate how to create new agents during a simulation of a dynamic species.
- Adding of a
reproduce
behavior for theprey
andpredator
species:- When an agent has enough energy, it has a certain probability to have a certain number of offspring.
- The energy of the offspring is equal to the parent energy divided by the number of offspring.
- The parent gets the same energy as its offspring.
We add six new parameters related to breeding:
- The reproduction probability for prey agents
- The max number of offspring for prey agents
- The minimum energy to reproduce for prey agents
- The reproduction probability for predator agents
- The max number of offspring for predator agents
- The minimum energy to reproduce for predator agents
We define six new global variables in the global section:
global {
...
float prey_proba_reproduce <- 0.01;
int prey_nb_max_offsprings <- 5;
float prey_energy_reproduce <- 0.5;
float predator_proba_reproduce <- 0.01;
int predator_nb_max_offsprings <- 3;
float predator_energy_reproduce <- 0.5;
...
}
We define then the six corresponding parameters in the experiment:
parameter "Prey probability reproduce: " var: prey_proba_reproduce category: "Prey" ;
parameter "Prey nb max offsprings: " var: prey_nb_max_offsprings category: "Prey" ;
parameter "Prey energy reproduce: " var: prey_energy_reproduce category: "Prey" ;
parameter "Predator probability reproduce: " var: predator_proba_reproduce category: "Predator" ;
parameter "Predator nb max offsprings: " var: predator_nb_max_offsprings category: "Predator" ;
parameter "Predator energy reproduce: " var: predator_energy_reproduce category: "Predator" ;
The reproduction dynamics is the same for both prey
and predator
species, it can thus be implemented only once inside the parent species. But the values of the parameters will depend on the species, and thus have to be set with different values inside each of them.
We add three new variables for the generic_species
:
proba_reproduce
nb_max_offsprings
energy_reproduce
We add as well a new reflex called reproduce
:
- this reflex is activated only when:
- The energy of the agent is greater or equals to
energy_reproduce
- AND according to the probability
proba_reproduce
: for this second condition, we use theflip(proba)
operator that returnstrue
according to the probability proba (false
otherwise).
- The energy of the agent is greater or equals to
- this reflex creates
nb_offsprings
(random number between 1 andnb_max_offsprings
) new agents of the species of the agent using thecreate
statement: we use a species casting operator on the current agent.- the created agents are initialized as follows:
-
my_cell
:my_cell
of the agent creating the agents, -
location
: location ofmy_cell
, -
energy
: energy of the agent creating the agents (use of keyword myself) divided by the number of offsprings.
-
- the created agents are initialized as follows:
- after the agent creation, the reflex updates the energy value of the current agent with the value:
energy / nb_offsprings
.
species generic_species {
...
float proba_reproduce ;
int nb_max_offsprings;
float energy_reproduce;
...
reflex reproduce when: (energy >= energy_reproduce) and (flip(proba_reproduce)) {
int nb_offsprings <- rnd(1, nb_max_offsprings);
create species(self) number: nb_offsprings {
my_cell <- myself.my_cell ;
location <- my_cell.location ;
energy <- myself.energy / nb_offsprings ;
}
energy <- energy / nb_offsprings ;
}
}
Note that two keywords (pseudo-variables) can be used to make explicit references to some agents:
- The agent that is currently executing the statements inside the block (for example a newly created agent):
self
- The agent that is executing the statement that contains this block (for instance, the agent that has called the create statement):
myself
We specialize the prey
species from the generic_species
species as follows:
- definition of the initial value of the agent variables
species prey parent: generic_species {
...
float proba_reproduce <- prey_proba_reproduce ;
int nb_max_offsprings <- prey_nb_max_offsprings ;
float energy_reproduce <- prey_energy_reproduce ;
...
}
As done for the prey
species, we specialize the predator
species from the generic_species
species:
- definition of the initial value of the agent variables:
species predator parent: generic_species {
...
float proba_reproduce <- predator_proba_reproduce ;
int nb_max_offsprings <- predator_nb_max_offsprings ;
float energy_reproduce <- predator_energy_reproduce ;
...
}
https://github.com/gama-platform/gama.old/blob/GAMA_1.9.2/msi.gama.models/models/Tutorials/Predator%20Prey/models/Model%2006.gaml
- Installation and Launching
- Workspace, Projects and Models
- Editing Models
- Running Experiments
- Running Headless
- Preferences
- Troubleshooting
- Introduction
- Manipulate basic Species
- Global Species
- Defining Advanced Species
- Defining GUI Experiment
- Exploring Models
- Optimizing Models
- Multi-Paradigm Modeling
- Manipulate OSM Data
- Cleaning OSM Data
- Diffusion
- Using Database
- Using FIPA ACL
- Using BDI with BEN
- Using Driving Skill
- Manipulate dates
- Manipulate lights
- Using comodel
- Save and restore Simulations
- Using network
- Headless mode
- Using Headless
- Writing Unit Tests
- Ensure model's reproducibility
- Going further with extensions
- Built-in Species
- Built-in Skills
- Built-in Architecture
- Statements
- Data Type
- File Type
- Expressions
- Exhaustive list of GAMA Keywords
- Installing the GIT version
- Developing Extensions
- Introduction to GAMA Java API
- Using GAMA flags
- Creating a release of GAMA
- Documentation generation